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ABSTRACT

Trailing suction hopper dredgers are widely used to excavate sand from the sea bottom. One or two operators
control the ship who usually aim to maximize the production of sand. This production depends on the incoming
sand mass flow and on the losses during the overflow phase. The incoming flow-rate, the density of the incoming
mixture and the grain-size and distribution all influence the sedimentation rate. Currently, the operators’ strategy
is to maximize the incoming production from the drag head, while little attention is paid to the sedimentation
process. This article describes an improved control strategy based on model predictive control to optimize the
total process. A predictive control strategy is necessary because the results of the control actions are only
observed at the end of the dredging process. The control inputs are the pitch of the screw blades to control the
ship’s speed, the diesel engine speed to control the mixtureflow-rate and the drag head visor angle to control the
incoming density in the drag head. The optimization objective is to maximize the sand content in the hopper at
the end of the cycle, the tons of dry solids (TDS). As the dredging cycle also includes sailing and discharging,
the optimal dredging strategy depends on the total cycle time. Therefore the degrees of freedom to achieve the
optimization objective are the control inputs as well as thedredging time. Our simulation results show that the
production-oriented strategy, currently used by operators, is suboptimal. The achievable improvement depends
on the type of sand and ranges between 5 % and 11 % for coarse andfine sand.

INTRODUCTION

A well known technique for optimizing the dredging cycle is the tangent method (IHC Holland 1991). This
method determines, based on the paying load curve and the sailing and discharging time, the optimal dredging
time. This method is not suitable for online use, since it canonly determine the optimum stopping time
afterwards. Under operating conditions, the soil type, theinputs, such as the flow-rate of the pump and the
ships speed and disturbances, all influence the paying load curve. Under these conditions it is very difficult
to calculate the optimal dredging time, because the disturbances and control inputs are not known in advance.
Therefore, optimization of the dredging cycle requires an integral approach that takes all processes into account
which influence the performance.
One of the first who recognized the importance of determiningthe optimal stopping time online was Knust
(1973). He installed an analogue computer on the dredger ”Ludwig Franzius” that determined the optimal
stopping time online. Nowadays digital computers perform this task. Others automated the dredger by using
expert knowledge of the operator and capture this in fuzzy rules (Ikeda et al. 1995). Moreover the modern dredger
has a lot of sensors, such as a radioactive density measurement, mixture velocity measurement, draught and
hopper volume measurement etc. These developments pave theway for advanced optimization and estimation
techniques such as particle filtering (Babuška et al. 2006)and model predictive control as described in this
article.
Two processes dominate the production of a trailing suctionhopper dredger: the incoming production process
from the drag head, pump and pipeline and the sedimentation process in the hopper. High incoming production
with a large flow-rate can negatively influence the sedimentation which results in large overflow loss. This
effect increases when the grain size of the sand is smaller. When optimizing the integral process both processes
must be taken into account.
This paper addresses the optimization of the dredging performance by finding the optimal control strategy.
Optimal control of a very nonlinear system such as the dredging process is a complicated issue. By defining
this as a constraint based optimization, you can solve this by the classic theory of Optimal Control as developed
between 1955 and 1970. The solution to the optimization problem is solved by the Hamilton-Jacobi-Bellman
equation. Unfortunately, it is virtually impossible to solve the optimal control problem analytically in most
cases. Therefore we propose to solve the optimal control problem numerically.
The sedimentation process is a slow process, moreover it is hidden to the naked-eye and measurements. Not until
the end of the dredging cycle, it becomes clear how fast the sand has settled. To incorporate the sedimentation
process into the optimization strategy it is therefore necessary to predict the sedimentation behavior based on
the inputs of the system. A method which is particular suitable for optimization based on future predictions is
model predictive control (Maciejowski 2002).
This technique uses an internal model to predict the behavior of the ship and an optimization technique to find
the optimal future control sequence. The controller applies the first step in this sequence to the system and
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the whole process starts again. The controller achieves closed loop behavior in this way that is able to reject
disturbances and model uncertainties.
Here we focus on a common configuration of a trailing suction hopper dredger which is the diesel direct
configuration. The ship has two diesel engines, each attached to its own propeller and dredge pump via
gearboxes. Adjusting the pitch of the screw blades controlsthe ship’s speed. A flow-rate controller, available
on most modern dredgers, adjusts the pump speed so that the flow-rate remains constant.
The dredge pumps transport sand through a suction pipe from the sea bottom to the hopper. The drag head,
connected to the suction pipe see Fig. 1, excavates the sand from the bottom. Its function is to break the coherence
of the sand at the bottom. There are three excavation mechanisms: injecting water under high pressure in the
sand with water jets, cutting the sand pack with teeth and eroding sand with sucking up water. In contrast to
the stationary dredger, this ship sails during the excavation.
In the hopper, the heavy grains settle at the bottom and form asand bed. One or two overflow pipes discharge
the excess water. Once the height of the hopper content reaches the height of these pipes, water and light
weight grains start flowing out. As the sand bed grows, the density of the outgoing mixture increases, which
leads to higher overflow losses. Although some of the losses are unavoidable due the natural settling process,
the inputs, such as the pump speed and the change in overflow position, influence the rest of the losses.

Diesel Engine

Pump

Overflow pipe

Drag head

Hopper

Pipe

Figure 1. A schematic drawing of a hopper dredger.

OPTIMIZATION OBJECTIVE

In practice the operators focus on the production process ofthe drag head and pump, and not on the sedimentation
process. This leads to the situation where the incoming production is high, but that due to the high flow-rate,
the sedimentation rate is poor. It is hard to take this effectexplicitly into account, because the sedimentation
rate is not measured. Not until the end of the dredging process it becomes clear what the results of the control
actions are. This delay between the control action and the performance indication requires a predictive model.
Therefore we suggest a model predictive control approach that takes both the production and the sedimentation
process into account.
The production of a trailing suction hopper dredger dependson a range of variables. Some of these variables
we manipulate, such as the pump speed, the ship’s speed or thevisor angle, but other variables are disturbances,
such as the dredging depth and the the ship’s draught. The complexity of the optimization is in the coupling
of the important sub-processes. For the predictive controller we choose three manipulated variables: the screw
blade pitchφ for adjusting the ship’s speed, the diesel engine speedωd which is connected to the pump to
control the pump speedωp and the visor angleαv which determines the excavation depth of the drag head.
We base this choice on the inputs that influence the performance the most.

Illustrative Example

To illustrate the above described character of the process we compare two different loading strategies for finer
sand material with a grain size of 0.19 mm. The loading strategy is according to a constant tonnage loading
system, where a controller reduces the overflow height to maintain the maximum draught at the end of the
cycle. We keep the mixture flow-rate constant during the entire dredging phase and compare the following two
strategies:

1) the incoming production is maximal (200 ton/min), with a flow-rate of 7 m3/s,
2) the production is 175 ton/min, with a lower flow-rate of 5 m3/s.

Fig. 2 shows that until 40 minutes strategy 1 results in more tons of dry solids, however at the end of the
dredging cycle, strategy 2 results in 8 % more tons of dry solids in the hopper. This means that strategy 1 leads
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to higher overflow losses, whereas strategy 2 leads to a faster rising sand bedms and less losses, see Fig. 2
(right).



with φ the screw pitch,ωd the diesel engine speed andαv the visor angle. The state vectorx is:
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whereVt is the hopper volume,mt is the hopper mass,ms is the sand bed mass in the hopper,Qi is the
flow-rate andvsh is the ship’s speed. The first three states describe the hopper sedimentation dynamics, the
flow-rate represents the pump pipeline dynamics and the ship’s speed the sailing dynamics.
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Figure 3. Illustration of the MPC algorithm applied to the optimization of the hopper dredger: left the
optimization in the predictive controller at time step k, right the optimization in the predictive controller
at time step k + 1.

MODEL PREDICTIVE CONTROL

Model predictive control is a technique that calculates thecontrol actions based on an internal model of the
system (Maciejowski 2002). This internal model makes prediction based on the assumed input trajectory and
initial conditions. These predictions are necessary to evaluate the objective function, which is a mathematical
representation of the control goal to be achieved. The predictive controller uses an optimization scheme to
search for the control actions that give the best predicted behavior. The optimization scheme chooses the best
input trajectory and applies only the first element of that trajectory to the plant. This repeats itself every
sampling interval. Since the prediction horizon remains the same length, it slides along each sampling interval,
the so-called receding horizon.
We demonstrate the model predictive controller with an example. The left part of Fig. 3 at timek gives three
possible control sequences for the diesel engine speed and the visor angle. For these sequences, the model
predicts a trajectory for the tons of dry solids. The predictive controller applies the first control action of the
optimal sequence. Then the process starts over again at timek +1 as can be seen in the right panel. The inputs
for which the algorithm searches the optimal solution are within the control horizonHc, but the prediction
takes place for a prediction horizonHp. This reduces the number of decision variables to reduce complexity.
For the remainder of the prediction horizon the inputs are constant. The figure also illustrates that the prediction
horizon may vary. As the process comes near the end of the cycle, the prediction horizon shrinks, because it is
not necessary to predict the process behavior beyond the optimal dredging time. This principle, the shrinking-
horizon predictive control, is typical for batch processes(Joseph & Hanratty 1993, Thomas et al. 1994, Liotta
et al. 1997).
Fig. 4 illustrates the model predictive controller with a general block scheme. At every time stepk, the predictive
controller receives measurements of the states of the totalsystem. Given the state vectorx(k), the optimizer
simulates the internal model for various input sequences and predicts the future state evolution. The objective
function calculates the performance which is returned to the optimizer. The optimizer searches through the
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Figure 4. Block diagram of the model predictive controller applied to the hopper dredger.

solution space to find the optimal control strategy. Once a terminal condition is met, the first control action of
the optimal sequence is applied to the system and at the next sample time the predictive controller starts over
again.
One particular benefit of the model predictive control strategy is the ability to satisfy constraints in the system.
Every practical system has constraints, for example input constraints such as the maximum pitch or state
constraints such as the maximum allowable hopper massmt. Very often, the optimal operation point is at or
close to the constraints.
Because we want to exploit the nonlinear behavior of the system, we choose a nonlinear modeling approach for
the model predictive control scheme. This, however, has consequences. First of all, the optimization problem
is not necessarily convex and therefore it is not guaranteedthat the solver finds the global optimum. Moreover
the optimization becomes computationally hard which has consequences for the minimal sampling rate which
can be achieved. Fortunately the hopper process is a slow process, so the sampling rate can be in the order
of minutes. But still we are looking for a computationally fast model which simulates the whole dredging
cycle within several seconds. This requirement rules out some modeling approaches such as partial differential
equations which are normally solved by finite element techniques.

MODELING

The goal of this model is to predict the tons of dry solids for afuture input trajectory. The inputs are the
screw pitchφ, the diesel engine speedωd and the visor angleαv, so the model must contain all subsystems in
between these inputs and the tons of dry solids. We distiguish four parts based on this: a ship model, a drag
head model, a pump and pipeline model and a hopper model, see Fig. 5. The figure shows also the interactions
of the four individual models.
The screw pitchφ determines the forces of the propellers to control the ship motion. These forces accelerate
the ship with a total mass that is varying due to the hopper load, therefore the acceleration depends on the
massmt. The trailing force of the drag head pulls the ship. This trailing force depends on the cutting depth of
the drag head and on the friction between the drag head and thebottom.
The are no models available in the literature to predict the drag head production based on the control actions.
Therefore we obtain the drag head model via automatic black box modeling (Maertens et al. 2005). This results
in a model that predicts the incoming drag head density basedon the flow-rateQi and the ship’s speedvsh. The
control inputs available on the drag head manipulate the incoming density. The following inputs are available:
the drag head visor angle which determines the cut height, a water valve that dilutes the mixture in the drag
head, water-jet-nozzles that loosen and dilute the sand before excavating and drag head force on the bottom.
In this paper we consider only one input that controls the incoming density between the minimum and the
maximum value.
The pump is controlling the flow-rate in the pipe and drag head. The diesel speed changes the pump speed
to adjusts the manometric head which the pump uses to accelerate the mixture in the pump and pipeline. The
pressure losses are composed of the resistance forces and the static pressure losses for lifting the mixture from
the sea bottom to the pipeline outlet. These static losses are time varying as the pipeline outlet position above
the sea level decreased when the mass in the hopper increases. The mass which the pump has to accelerate
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Figure 5. Block diagram of the total process model that is used in the MPC.

depends on the average densityρpi in the pipeline. This density depends on the incoming drag head density
ρd. The average densityρpi in the pipeline has also a large influence on the pipe resistance forces, moreover
the density of the pumpρpu influences the manometric head which the pump delivers. Since the time scale of
the pump pipeline process is much smaller than that of the predictive controller, we assume no transport delay:

ρi = ρpu = ρpi = ρd

In the hopper a flow-rateQi enters with an incoming densityρi. These two inputs influence the sedimentation
process as well as the outgoing density. The massmt and the volumeVt of the hopper content determine the
tons of dry solids in the hopper, which gives the performanceof the total process, see (2).

Ship Model

The drag head production depends only on the forward velocity and not on the sidewards velocity, therefore
we choose a 1D approximation of the ship motion. Two screws propel the ship with a variable screw pitch to
regulate the thrust force. The hull and lowered pipes encounter a resistance force with water. Moreover, the drag
head causes a friction force and a cutting force if it is equipped with teeth. The simplified motion equation,
based on the second law of Newton, for the ship’s speedvsh is the following:

v̇sh =
1

msh + mt

(Fth − Fd − Fc) (5)

hd = f(mt) ≈ admt + bd (6)

whereFth is the thrust force of the screw blades,Fd is the drag resistance force,Fc is the cut force of the
drag head,msh is the mass of the empty ship andhd is the ships draught, which outputs to the pump pipeline
model, see Fig. 5. The coefficientsad and bd are calibrated using data. The draught of the ship is a function
of the hopper mass. We assume that the empty ship mass is constant. A linear approximation already gives an
accurate estimation of the draughthd. It is of course possible to use a more accurate approximation such as
a lookup table. In the derivation of (5) we neglected the timederivative of the mass because this term is very
small. Curve fitting on a detailed and accurate model for the thrust force resulted in the following simplified
model:

Fth = 2KT (ωdNs)
2
φ

3

2

whereKT is a constant,ωd is the diesel engine speed,φ is the pitch of screw blades andNs is the gear ratio
from the diesel engine to the screw axis. Here we assume one input that controls the blades on both screws
and one input that controls both engines, therefore we multiply the force by two. The combined ship’s drag
force of the hull, pipe and drag head is the following:

Fd = kd|vsh|vsh
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wherekd is the drag coefficient. This coefficient is time varying, because of increasing draught and bottom
disturbances. Miedema (1987) showed in his research that the relation for the non cavitating cutting is:

Fc = kch
2
cvsh

where hc is the cutting depth of the blades andkc is the cut force coefficient, which depends on soil
characteristics, but is considered constant in this paper.

Drag Head Model

This model must predict the incoming densityρd into the drag head. There are hardly any models described in
literature that predict the drag head process. Therefore wechoose a nonlinear data driven black box modeling
(Maertens et al. 2005) approach. An algorithm automatically builds polynomial models by analyzing a large data
set with relevant measured variables. The algorithm calibrates the models on the data and a genetic algorithm
searches through the large number of models to select the best for the prediction. This model depends only on
variables which have large correlation with the predicted incoming density. This automatic black box modeling
approach results in the following model for the density:

ρi = −aQ2
i + bvsh + c (7)

wherea, b and c are positive coefficients. This model is obtained from data in the case that the drag head is
not controlled. The drag head has a water inlet valve and a controllable visor angle. With these control inputs
it is possible to regulated the drag head density. The data set for which the model is valid was recorded with
a drag head in the so-called loose mode where the drag head exerts a constant pressure on the bottom. We
assume that (7) is an upper bound for the density and that it ispossible to decrease the incoming density by
decreasing the visor angle or to open a control valve (the water flap) on top of the drag head. The controlled
incoming density has the following model:

ρi = αv(−aQ2
i + bvsh + c) + (1 − αv)ρw (8)

where0 ≤ αv ≤ 1 is the control input for the visor angle. This assumption must still be validated in practice
which is a subject for further research.

Pump Pipeline Model

Studies of the pump and pipeline are numerous (Durand & Condolios 1952, Fürböter 1961, Jufin & Lopatin
1966, Wilson 1992, Miedema 1996, Bree 1977, Matoušek 1997). The model of the pump and pipeline must
predict the flow-rateQi based on the pump speedωp for a given density. The system of equations for the pump
pipeline model is the following:

Q̇i =
Ap

ρiLp

(∆pman − ∆ploss − ∆ps − ∆pd) (9)

(10)

where∆pman is the manometric head that the pump uses to accelerate the mixture, ∆ploss is the pipe line
resistance,∆ps is the static head loss,∆pd the pressure loss over the drag head,Ap is the average area of the
pipeline,ρi is the average density in the pipeline andLp is the pipe line length.
The diesel engine drives the pump by means of a gear box with gear ratioNp. Dependent on the diesel engine
speed, the pressure head for pumping water is the following:

∆pman,w = h0n (ωdNp)
2
− h1nωdNpQi − h2nQ2

i

whereh0n, h1n and h2n are the pump coefficients. During dredging, mixture is flowing through the pump,
which influences the pressure head. This influence depends onthe particle size and distribution in the mixture
together with the concentration. This so-called solids effect influences the pump head as follows:

∆pman = ∆pman,w(1 + 1.65αpCt)

with αp a coefficient dependent on the grain-size,Ct the transport concentration in the pump:

Ct = kt

ρi − ρw

ρq − ρw

.

wherekt is the transport coefficient which is unity in case of no slip.
There exist many models for the pipeline resistance (Durand& Condolios 1952, Wilson 1976, Fürböter 1961,
Jufin & Lopatin 1966). Here we choose the Führböter model, because it is easy to calibrate on data. The
pipeline consists of an inclined part under water and a horizontal part above water:

∆ploss = ∆pph + ∆ppi
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where∆pph is the resistance of the horizontal pipe and∆ppi is the resistance of the inclined pipe. The part
of the pipeline which is under water is inclined. This inclination reduces the solids effect. Worster & Denny
(1955) were one of the first to incorporate this effect. The pressure drop for a horizontal pipeline and inclined
pipeline is:

∆pph = apQ
2
i +

bpCt

Qi

∆ppi = apQ
2
i +

bpCt

Qi

cos(α)

with

ap = 8
λf

D5

ρwLp

π2
bp = Sktπ

(

D

2

)2

Lp

whereλf is the friction coefficient of water,ρw is the water density,D is the pipe diameter,Lp is the pipe
length,Ct is the transport concentration,Skt is the solids effect coefficient andα is the angle of the suction
pipe.
The static head loss is:

∆ps = (ρi − ρw)hzg + ρpi(hhi − hd)g

wherehhi is the distance from the ship’s keel to the pipe inlet in the hopper,g is the gravitational acceleration,
hz is the dredging depth andhd is the draught, see (6).
The vapor pressure of the mixture in front of the pump limits the allowable suction pressure. If this pressure
becomes too small, the pump starts cavitating. This is thus an important constraint in the optimization algorithm.
The inlet pressure of the pump is:

pi = patm + ρwghz − ρig(hz − (hd − hpd)) − ∆ploss,s − ∆pd

where∆ploss,s is the resistance pressure of the suction pipe,hpd is the pump height above the keel,patm the
atmospheric pressure and∆pd the pressure loss over the drag head.

Hopper Model

The excavated sand enters the hopper with the flow-rateQi and densityρi. At the bottom a sand bed is forming.
For the optimization it is necessary to model the bed rise velocity and the overflow density. If the overflow
density is too high the dredging process should be stopped. Since we are not interested in any other internal
behavior of the hopper process, a 1D approximation over the height is sufficient. In the literature, this process
has been modeled with partial differential equations (Dobbins 1944, Camp 1946, Rhee 2002), but because we
need a fast model these are not the best and obvious choice. Wedeveloped a fast but accurate model that
predicts both the overflow density and the bed rise velocity (Braaksma et al. 2007). We validated this model
on test rig data as well as on real dredger data.

w

Qi

ρi

Qo

ρo

ht
Qs

ρms

ρs hs

ho

Qmsρms

Qw ρw

Qw

Figure 6. A schematic of the water-layer model.

The model has three state variables: the total mass in the hoppermt, the total volumeVt of the mixture in the
hopper and the mass of the sand bedms. A constant tonnage control loading system controls the overflow height
ho. The pump and pipeline model determines the incoming flow-rate and the drag head model the incoming
density. The following differential equations describe the sedimentation dynamics:

V̇t = Qi − Qo

ṁt = Qiρi − Qoρo (11)

ṁs = Qsρs .

The first two equations represent the volume and mass balance, respectively. The third equation gives the rate
of sand sedimentation, whereQs is the sand flow-rate from the mixture layer to the sand layer and ρs is the
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sand density. The overflow-rateQo is the sum of the water flowQw and the mixture soup flowQms, see Fig. 6.
The ratio of these two flows and the density of the mixture soupρms determine the outgoing densityρo. We
leave a detailed description out for compactness and refer to (Braaksma et al. 2007) for the details.
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Figure 7. Comparison of the MPC strategy with a poorly performing operator (left) and a well performing
operator (right) for coarse sand. The vertical dashed line is the optimal stopping time for the predictive
control strategy.

RESULTS

We choose two scenarios to illustrate the performance of themodel predictive control strategy: coarse sand
and medium sand. Since we have only data available for coarsesand, we only compare this scenario with data
from a trailing suction hopper dredger with a hopper volume of 13000 m3. We use the measured data of the
dredging depthhz as a disturbance. We have estimated the grain-size between 1and 2 mm. The model is
carefully calibrated with the ship data and used in the modelpredictive controller as well as in the plant model
to simulate the performance. We choose for the total sailingand discharge time a value of three and a half
hours.
Fig. 7 shows the comparison of an operator (Real Ship) with the simulated model predictive control performance.
The left figure shows poor operator performance and the rightfigure shows good operator performance. These
results illustrate that the Model Predictive controller performs slightly better than a good operator, but much
better than a poorly performing operator. The optimizationleads to a shortening in dredging time by 10 - 18
minutes, when stopping at the predicted optimal dredging time Td which is given by the vertical dashed line.
This is an improvement of 10 % to 18% of the total dredging time.
Fig. 8 shows the inputs computed by the predictive controller. The controller manipulates the pitchαv such
that the ship sails at the maximum allowed speed of 2 m/s. Thisis a predefined constraint based on examining
the data. If this constraint is not present the algorithm would maximize the speed to unrealistic values. In our
setting, the faster the ship sails the better the performance. The controller manipulated the visor such that in
the first 20 minutes the vacuum limitation of the pump is not violated. If in this period the pump would suck
up a higher density, then the pressure drop over the pipelinewould cause the pump to cavitate. Thereafter the
predictive controller manipulates the visor to maximize the production. The pump speed is maximal in this
example except for some deviations in the beginning which are caused by the variable dredging depth. The
flow-rate shows an increasing trend, this is caused by the increasing draught of the ship. When the draught
increases, the geodetic head loss becomes smaller, so that the flow-rate increases.
The real benefit of the model predictive control is for dredging of finer sand, because then the hopper
sedimentation process is more important. In the following scenario we use the same dredging depth disturbance
as the previous example, but with an average grain-size diameter of 0.2 mm.
This smaller grain-size reduces the friction losses in the pipeline and increases the effect of solids in the pump.
In this scenario, the inlet pressure is no longer decisive and predictive controller manipulates the visor angle
such that the incoming density is maximal. However, the increase in the flow-rate would result in an increase of
the overflow losses, but also in a reduction of the incoming production. Therefore the controller automatically
reduces the pump speed to lower the flow-rate. Fig. 9 illustrates the difference in performance between reducing
the pump speed and keeping it at the maximum value. This showsthat lowering the pump speed improves the
production.
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Figure 8. The inputs for coarse sand: in the left column the control inputs to the system of calculated
by the predictive controller, in the right column the resulting process behavior.

Fig. 10 shows the inputs for medium grain-size sand. The predictive controller manipulates the screw pitch to
sail at the maximum speed and the visor such that the maximum density is flowing into the hopper. But it
reduces the pump speed significantly when dredging the medium grain-size sand.

CONCLUSIONS

This paper shows a nonlinear model predictive controller. For this controller we derived a model of the whole
trailing suction hopper dredger. It consists of four parts which takes the sailing process, the drag head process,
the pump pipeline process and the hopper process into account. Nonlinearities and coupling effects between the
four processes characterize the model. To improve the dredging performance and find a trade off between the
excavation process (production) and the sedimentation process, a model predictive control strategy is proposed.
The results based on simulations lead to the following conclusions.
The excavation process mainly determines the optimal operation when dredging coarse sand, because the sand
settles very well in the hopper. By using a model predicive controller, simulations show an decrease in the
total dredging time between 8 and 18 minutes. There are two main reasons for the improvement. Firstly, the
controller prevents cavitation by adjusting the visor angle and controlling the incoming densityρi. Secondly the
controller maintains a constant ship’s speed of 2 m/s by adjusting the screw pitch. The ship data showed that
due to cavitation and the resulting safety measures (opening the water valve) the flow-rate fluctuated largely
and that the ship speed varied significantly. The model predictive controller prevents both and therefore results
in better performance. The performance improves between 4 %and 6% for the cycle production with a sailing
and discharge time of 3.5 hours. This means an increase in week production between 19152 tons and 37296
tons which is approximately 1 to 2 ship loads.
For medium sand, the predictive controller uses a differentstrategy then for coarse sand. For this type of sand,
the sedimentation process is also important for the total performance. In this case the controller lowers the
pump speed to improve the settling efficiency and reduces theflow-rate to obtain a higher incoming density.
For medium sand the performance improves with 11 % for the cycle production, compared to a strategy with
maximum pump speed.
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