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MODEL PREDICTIVE CONTROL FOR OPTIMIZING THE OVERALL
DREDGING PERFORMANCE OF A TRAILING SUCTION HOPPER DREDGER

J. Braaksmj R. Babuska J.B. Klaassertsand C. de Keizér

ABSTRACT

Trailing suction hopper dredgers are widely used to exeasahd from the sea bottom. One or two operators
control the ship who usually aim to maximize the productibsand. This production depends on the incoming
sand mass flow and on the losses during the overflow phasend@tming flow-rate, the density of the incoming
mixture and the grain-size and distribution all influence sledimentation rate. Currently, the operators’ strategy
is to maximize the incoming production from the drag headienittle attention is paid to the sedimentation
process. This article describes an improved control giyaesed on model predictive control to optimize the
total process. A predictive control strategy is necessagabse the results of the control actions are only
observed at the end of the dredging process. The controtsrgre the pitch of the screw blades to control the
ship’s speed, the diesel engine speed to control the miftwerate and the drag head visor angle to control the
incoming density in the drag head. The optimization obyecis to maximize the sand content in the hopper at
the end of the cycle, the tons of dry solids (TDS). As the dirgigycle also includes sailing and discharging,
the optimal dredging strategy depends on the total cycle.tiimerefore the degrees of freedom to achieve the
optimization objective are the control inputs as well asdhedging time. Our simulation results show that the
production-oriented strategy, currently used by opesatisrsuboptimal. The achievable improvement depends
on the type of sand and ranges between 5 % and 11 % for coardimarshnd.

INTRODUCTION

A well known technique for optimizing the dredging cycle ettangent method (IHC Holland 1991). This
method determines, based on the paying load curve and tivggsand discharging time, the optimal dredging
time. This method is not suitable for online use, since it caty determine the optimum stopping time
afterwards. Under operating conditions, the soil type, itiputs, such as the flow-rate of the pump and the
ships speed and disturbances, all influence the paying loag.cUnder these conditions it is very difficult
to calculate the optimal dredging time, because the diahgbs and control inputs are not known in advance.
Therefore, optimization of the dredging cycle requiresraagral approach that takes all processes into account
which influence the performance.

One of the first who recognized the importance of determiriregoptimal stopping time online was Knust
(1973). He installed an analogue computer on the dredgedwig Franzius” that determined the optimal
stopping time online. Nowadays digital computers perfohis task. Others automated the dredger by using
expert knowledge of the operator and capture this in fuzlesr{lkeda et al. 1995). Moreover the modern dredger
has a lot of sensors, such as a radioactive density measutiemigture velocity measurement, draught and
hopper volume measurement etc. These developments paveayhtor advanced optimization and estimation
techniques such as particle filtering (Babuska et al. 2@0®) model predictive control as described in this
article.

Two processes dominate the production of a trailing sudtiopper dredger: the incoming production process
from the drag head, pump and pipeline and the sedimentat@egs in the hopper. High incoming production
with a large flow-rate can negatively influence the sedim@rtawvhich results in large overflow loss. This
effect increases when the grain size of the sand is smalleerVéptimizing the integral process both processes
must be taken into account.

This paper addresses the optimization of the dredging peeoce by finding the optimal control strategy.
Optimal control of a very nonlinear system such as the dreglgrocess is a complicated issue. By defining
this as a constraint based optimization, you can solve thité classic theory of Optimal Control as developed
between 1955 and 1970. The solution to the optimization Iprokis solved by the Hamilton-Jacobi-Bellman
equation. Unfortunately, it is virtually impossible to gelthe optimal control problem analytically in most
cases. Therefore we propose to solve the optimal contrddl@mo numerically.

The sedimentation process is a slow process, moreoveriddeh to the naked-eye and measurements. Not until
the end of the dredging cycle, it becomes clear how fast thd kas settled. To incorporate the sedimentation
process into the optimization strategy it is therefore ssagy to predict the sedimentation behavior based on
the inputs of the system. A method which is particular su&dbr optimization based on future predictions is
model predictive control (Maciejowski 2002).

This technique uses an internal model to predict the behafithe ship and an optimization technique to find
the optimal future control sequence. The controller agpliee first step in this sequence to the system and
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the whole process starts again. The controller achievesedltoop behavior in this way that is able to reject
disturbances and model uncertainties.

Here we focus on a common configuration of a trailing suctiopger dredger which is the diesel direct

configuration. The ship has two diesel engines, each atlatiéts own propeller and dredge pump via

gearboxes. Adjusting the pitch of the screw blades conti@sship’s speed. A flow-rate controller, available

on most modern dredgers, adjusts the pump speed so that wheaft® remains constant.

The dredge pumps transport sand through a suction pipe fnense¢a bottom to the hopper. The drag head,
connected to the suction pipe see Fig. 1, excavates the sandtfe bottom. Its function is to break the coherence
of the sand at the bottom. There are three excavation mexthaninjecting water under high pressure in the
sand with water jets, cutting the sand pack with teeth andilegosand with sucking up water. In contrast to

the stationary dredger, this ship sails during the excamati

In the hopper, the heavy grains settle at the bottom and fosand bed. One or two overflow pipes discharge
the excess water. Once the height of the hopper contentesatle height of these pipes, water and light
weight grains start flowing out. As the sand bed grows, thesitleiof the outgoing mixture increases, which

leads to higher overflow losses. Although some of the loseesi@avoidable due the natural settling process,
the inputs, such as the pump speed and the change in overfitioppinfluence the rest of the losses.

Overflow pipe

E Hopper ;

Pump

Diesel Engine

Drag head

Figure 1. A schematic drawing of a hopper dredger.

OPTIMIZATION OBJECTIVE

In practice the operators focus on the production procettealrag head and pump, and not on the sedimentation
process. This leads to the situation where the incomingumtaeh is high, but that due to the high flow-rate,
the sedimentation rate is poor. It is hard to take this eféegilicitly into account, because the sedimentation
rate is not measured. Not until the end of the dredging psitdsecomes clear what the results of the control
actions are. This delay between the control action and thienpeance indication requires a predictive model.
Therefore we suggest a model predictive control approaattéikes both the production and the sedimentation
process into account.

The production of a trailing suction hopper dredger depeamda range of variables. Some of these variables
we manipulate, such as the pump speed, the ship’s speed asthiengle, but other variables are disturbances,
such as the dredging depth and the the ship’s draught. Thelerity of the optimization is in the coupling

of the important sub-processes. For the predictive cdetrale choose three manipulated variables: the screw
blade pitch¢ for adjusting the ship’s speed, the diesel engine spgetvhich is connected to the pump to
control the pump speed, and the visor angley, which determines the excavation depth of the drag head.
We base this choice on the inputs that influence the perfocenéire most.

[llustrative Example
To illustrate the above described character of the processompare two different loading strategies for finer
sand material with a grain size of 0.19 mm. The loading gsais according to a constant tonnage loading
system, where a controller reduces the overflow height tontaiai the maximum draught at the end of the
cycle. We keep the mixture flow-rate constant during thereriedging phase and compare the following two
strategies:

1) the incoming production is maximal (200 ton/min), with awftrate of 7 nd/s,

2) the production is 175 ton/min, with a lower flow-rate of 5/m
Fig. 2 shows that until 40 minutes strategy 1 results in mores tof dry solids, however at the end of the
dredging cycle, strategy 2 results in 8 % more tons of drydsal the hopper. This means that strategy 1 leads
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to higher overflow losses, whereas strategy 2 leads to arfasteg sand bedn, and less losses, see Fig. 2

(right).
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with ¢ the screw pitchw, the diesel engine speed angl the visor angle. The state vectsiris:

Vi(t)
my(t)
x(t) = | ms(t)
Qi(t)
Ush(t)
where V; is the hopper volumem, is the hopper massn; is the sand bed mass in the hopp@, is the

flow-rate andv,, is the ship’s speed. The first three states describe the h@ggémentation dynamics, the
flow-rate represents the pump pipeline dynamics and thésséeed the sailing dynamics.

Prediction Horizon (H,) Prediction Horizon (H,)
K k1 k+2 k+3
wp w b ;
t t
Ay, ; Ay,
t t
TDS TDS
t t
\W—/ H/_J

Figure 3. Illustration of the MPC algorithm applied to the optimization of the hopper dredger: left the
optimization in the predictive controller at time step k, right the optimization in the predictive controller
at time step k£ + 1.

MODEL PREDICTIVE CONTROL

Model predictive control is a technique that calculates ¢betrol actions based on an internal model of the
system (Maciejowski 2002). This internal model makes mtiolh based on the assumed input trajectory and
initial conditions. These predictions are necessary tduata the objective function, which is a mathematical
representation of the control goal to be achieved. The ptigdi controller uses an optimization scheme to
search for the control actions that give the best predicedthbior. The optimization scheme chooses the best
input trajectory and applies only the first element of thajetctory to the plant. This repeats itself every
sampling interval. Since the prediction horizon remairesgame length, it slides along each sampling interval,
the so-called receding horizon.

We demonstrate the model predictive controller with an gdamThe left part of Fig. 3 at timé gives three
possible control sequences for the diesel engine speedhandidor angle. For these sequences, the model
predicts a trajectory for the tons of dry solids. The pradéctontroller applies the first control action of the
optimal sequence. Then the process starts over again aktifieas can be seen in the right panel. The inputs
for which the algorithm searches the optimal solution arehiwithe control horizonH ., but the prediction
takes place for a prediction horizdd,. This reduces the number of decision variables to reducepieoity.

For the remainder of the prediction horizon the inputs arestant. The figure also illustrates that the prediction
horizon may vary. As the process comes near the end of the,dj@ prediction horizon shrinks, because it is
not necessary to predict the process behavior beyond timalpdredging time. This principle, the shrinking-
horizon predictive control, is typical for batch proceséésseph & Hanratty 1993, Thomas et al. 1994, Liotta
et al. 1997).

Fig. 4 illustrates the model predictive controller with angeal block scheme. At every time stepthe predictive
controller receives measurements of the states of the sg&iém. Given the state vects(k), the optimizer
simulates the internal model for various input sequencespaadicts the future state evolution. The objective
function calculates the performance which is returned ® dptimizer. The optimizer searches through the
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Figure 4. Block diagram of the model predictive controller applied to the hopper dredger.

solution space to find the optimal control strategy. Oncermiteal condition is met, the first control action of
the optimal sequence is applied to the system and at the aextle time the predictive controller starts over
again.

One particular benefit of the model predictive control sgatis the ability to satisfy constraints in the system.
Every practical system has constraints, for example inpusttaints such as the maximum pitch or state
constraints such as the maximum allowable hopper massv/ery often, the optimal operation point is at or
close to the constraints.

Because we want to exploit the nonlinear behavior of theesystve choose a nonlinear modeling approach for
the model predictive control scheme. This, however, has@guences. First of all, the optimization problem
is not necessarily convex and therefore it is not guararitestdthe solver finds the global optimum. Moreover
the optimization becomes computationally hard which hassequences for the minimal sampling rate which
can be achieved. Fortunately the hopper process is a sloeeggpso the sampling rate can be in the order
of minutes. But still we are looking for a computationallysfamodel which simulates the whole dredging
cycle within several seconds. This requirement rules omtesmodeling approaches such as partial differential
equations which are normally solved by finite element teghes.

MODELING

The goal of this model is to predict the tons of dry solids fofuture input trajectory. The inputs are the
screw pitchg, the diesel engine speeg, and the visor angler,, so the model must contain all subsystems in
between these inputs and the tons of dry solids. We distigiaiar parts based on this: a ship model, a drag
head model, a pump and pipeline model and a hopper model,igeg. H he figure shows also the interactions
of the four individual models.

The screw pitchp determines the forces of the propellers to control the shipion. These forces accelerate
the ship with a total mass that is varying due to the hopped,Itizerefore the acceleration depends on the
massm;. The trailing force of the drag head pulls the ship. Thislitrgiforce depends on the cutting depth of
the drag head and on the friction between the drag head anabtiem.

The are no models available in the literature to predict ttag dhead production based on the control actions.
Therefore we obtain the drag head model via automatic blagknodeling (Maertens et al. 2005). This results
in a model that predicts the incoming drag head density basdtle flow-rateR); and the ship’s speed,,. The
control inputs available on the drag head manipulate thenmicg density. The following inputs are available:
the drag head visor angle which determines the cut heightatarwalve that dilutes the mixture in the drag
head, water-jet-nozzles that loosen and dilute the sanoréeikcavating and drag head force on the bottom.
In this paper we consider only one input that controls themmiag density between the minimum and the
maximum value.

The pump is controlling the flow-rate in the pipe and drag h&dwk diesel speed changes the pump speed
to adjusts the manometric head which the pump uses to aatelére mixture in the pump and pipeline. The
pressure losses are composed of the resistance forceseanthtic pressure losses for lifting the mixture from
the sea bottom to the pipeline outlet. These static losses$irae varying as the pipeline outlet position above
the sea level decreased when the mass in the hopper incré@asemass which the pump has to accelerate
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Figure 5. Block diagram of the total process model that is used in the MPC.

depends on the average dengity in the pipeline. This density depends on the incoming draadhgensity
p4- The average density,; in the pipeline has also a large influence on the pipe resistéorces, moreover
the density of the pump,,, influences the manometric head which the pump delivers.eSime time scale of
the pump pipeline process is much smaller than that of theigiiee controller, we assume no transport delay:

Pi = Ppu = Ppi = Pd

In the hopper a flow-rat€); enters with an incoming densipy;. These two inputs influence the sedimentation
process as well as the outgoing density. The mass&nd the volumé/; of the hopper content determine the
tons of dry solids in the hopper, which gives the performaoicthe total process, see (2).

Ship Model

The drag head production depends only on the forward vglaeitd not on the sidewards velocity, therefore
we choose a 1D approximation of the ship motion. Two screwpglrthe ship with a variable screw pitch to
regulate the thrust force. The hull and lowered pipes entew@resistance force with water. Moreover, the drag
head causes a friction force and a cutting force if it is epegpwith teeth. The simplified motion equation,
based on the second law of Newton, for the ship’s spegds the following:

1
bh = —————(Fyp — Fy — F, 5
Ush ms}l+mt( th d ) 5)
ha = f(m) = agmy + by (6)

where Fy;, is the thrust force of the screw bladdg; is the drag resistance forcé, is the cut force of the
drag headmygy, is the mass of the empty ship ahg is the ships draught, which outputs to the pump pipeline
model, see Fig. 5. The coefficientg andb, are calibrated using data. The draught of the ship is a foncti
of the hopper mass. We assume that the empty ship mass iscbnstlinear approximation already gives an
accurate estimation of the draughi. It is of course possible to use a more accurate approximatich as

a lookup table. In the derivation of (5) we neglected the tioleevative of the mass because this term is very
small. Curve fitting on a detailed and accurate model for Hrast force resulted in the following simplified
model:

Fip = 2K7 (waN,)? ¢

where K is a constanty, is the diesel engine speed,is the pitch of screw blades and; is the gear ratio
from the diesel engine to the screw axis. Here we assume @u# fhat controls the blades on both screws
and one input that controls both engines, therefore we piylthe force by two. The combined ship’s drag
force of the hull, pipe and drag head is the following:

Fyq = kqlvsn|vsn
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where k, is the drag coefficient. This coefficient is time varying, &ese of increasing draught and bottom
disturbances. Miedema (1987) showed in his research teatetation for the non cavitating cutting is:

Fc = kchivsh

where h. is the cutting depth of the blades ard is the cut force coefficient, which depends on soil
characteristics, but is considered constant in this paper.

Drag Head Model

This model must predict the incoming density into the drag head. There are hardly any models described in
literature that predict the drag head process. Thereforehwese a nonlinear data driven black box modeling
(Maertens et al. 2005) approach. An algorithm automatidalilds polynomial models by analyzing a large data
set with relevant measured variables. The algorithm catitsrthe models on the data and a genetic algorithm
searches through the large number of models to select thddvebe prediction. This model depends only on
variables which have large correlation with the predictetbming density. This automatic black box modeling
approach results in the following model for the density:

pi = —aQ? + bug, + ¢ (7)

wherea, b and ¢ are positive coefficients. This model is obtained from dat#éhe case that the drag head is
not controlled. The drag head has a water inlet valve and &altable visor angle. With these control inputs
it is possible to regulated the drag head density. The dattosevhich the model is valid was recorded with
a drag head in the so-called loose mode where the drag heaid exeonstant pressure on the bottom. We
assume that (7) is an upper bound for the density and thatpibssible to decrease the incoming density by
decreasing the visor angle or to open a control valve (themfip) on top of the drag head. The controlled
incoming density has the following model:

Pi = av(*aQ? +bvsn +¢) + (1 — ) pu (8)
where( < «,, < 1 is the control input for the visor angle. This assumption tvatifl be validated in practice
which is a subject for further research.

Pump Pipeline M odel

Studies of the pump and pipeline are numerous (Durand & Qasl®952, Furboter 1961, Jufin & Lopatin
1966, Wilson 1992, Miedema 1996, Bree 1977, MatouSek 19B7¢ model of the pump and pipeline must
predict the flow-rat&); based on the pump speed for a given density. The system of equations for the pump
pipeline model is the following:

. A
Qi - - (Apman - Aploss - Aps - Apd) (9)

pin
(10)
where Ap...n IS the manometric head that the pump uses to accelerate tttareiAp,;,ss is the pipe line
resistanceAp; is the static head losg\p, the pressure loss over the drag hedg,is the average area of the
pipeline, p; is the average density in the pipeline ahgl is the pipe line length.
The diesel engine drives the pump by means of a gear box wihrgéo IV,,. Dependent on the diesel engine
speed, the pressure head for pumping water is the following:

Apman,w - h()n (Wd—Nrp)2 - hlndein - h2an2

where hg,,, h1, and hq, are the pump coefficients. During dredging, mixture is flaythrough the pump,
which influences the pressure head. This influence depentisegparticle size and distribution in the mixture
together with the concentration. This so-called solideafinfluences the pump head as follows:

Apman = Apman,w(l + 1.65041,0,5)
with «,, a coefficient dependent on the grain-sizg,the transport concentration in the pump:

Ct — kt Pi — Pw )
Pq = Pw
wherek; is the transport coefficient which is unity in case of no slip.
There exist many models for the pipeline resistance (Dufai@bndolios 1952, Wilson 1976, Furboter 1961,
Jufin & Lopatin 1966). Here we choose the Fihrbodter modetahse it is easy to calibrate on data. The
pipeline consists of an inclined part under water and a bat& part above water:

Apioss = Apph + Appi
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where Ap,,, is the resistance of the horizontal pipe af\g,; is the resistance of the inclined pipe. The part
of the pipeline which is under water is inclined. This inéliilon reduces the solids effect. Worster & Denny
(1955) were one of the first to incorporate this effect. Thespure drop for a horizontal pipeline and inclined
pipeline is:

b,C, b,C;
Appn = a,Q? + a‘t Appi = a,Q% + Zg,.t cos(a)
with
>‘f puwl D 2
ap = 8577” bp = Spem <§> L,

where \; is the friction coefficient of waterp,, is the water densityD is the pipe diameterL,, is the pipe
length, C; is the transport concentratiofS,; is the solids effect coefficient and is the angle of the suction
pipe.

The static head loss is:

Aps = (pi - pw)hzg + sz‘(hhz‘ - hd)g

wherehy,; is the distance from the ship’s keel to the pipe inlet in thpgw®y,g is the gravitational acceleration,
h. is the dredging depth ank,; is the draught, see (6).

The vapor pressure of the mixture in front of the pump limite tllowable suction pressure. If this pressure
becomes too small, the pump starts cavitating. This is thusportant constraint in the optimization algorithm.
The inlet pressure of the pump is:

Pi = Patm + nghz - pig(hz - (hd - hpd)) - Aploss,s — Apq
whereAp;,ss s is the resistance pressure of the suction pipg,is the pump height above the kegl,,, the
atmospheric pressure adxh, the pressure loss over the drag head.

Hopper Model

The excavated sand enters the hopper with the flowépatend densityp;. At the bottom a sand bed is forming.
For the optimization it is necessary to model the bed risecigl and the overflow density. If the overflow
density is too high the dredging process should be stoppade Sve are not interested in any other internal
behavior of the hopper process, a 1D approximation over #ighhis sufficient. In the literature, this process
has been modeled with partial differential equations (Dbl 944, Camp 1946, Rhee 2002), but because we
need a fast model these are not the best and obvious choiceleWdoped a fast but accurate model that
predicts both the overflow density and the bed rise velo@ipaéksma et al. 2007). We validated this model
on test rig data as well as on real dredger data.

Qi
] p’b Qw pw [
x A —
IQw QnsPms | A
hy Pms v ho

Qs
¢ ps  §hs % l

Figure 6. A schematic of the water-layer model.

The model has three state variables: the total mass in thgehep, the total volumé/; of the mixture in the
hopper and the mass of the sand bed A constant tonnage control loading system controls theflove height
ho. The pump and pipeline model determines the incoming flae-amd the drag head model the incoming
density. The following differential equations describe gedimentation dynamics:

‘./t = QZ - Qo
my = szz - Qopo (11)
Mg = Qsps -

The first two equations represent the volume and mass balessectively. The third equation gives the rate
of sand sedimentation, whetg; is the sand flow-rate from the mixture layer to the sand layet & is the
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sand density. The overflow-ra€g, is the sum of the water flo,, and the mixture soup flo®,,s, see Fig. 6.
The ratio of these two flows and the density of the mixture spyp determine the outgoing densigy,. We
leave a detailed description out for compactness and ref@raaksma et al. 2007) for the details.
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Figure 7. Comparison of the MPC strategy with a poorly performing operator (left) and awell performing
operator (right) for coarse sand. The vertical dashed line is the optimal stopping time for the predictive
control strategy.

RESULTS

We choose two scenarios to illustrate the performance ofitbdel predictive control strategy: coarse sand
and medium sand. Since we have only data available for cears® we only compare this scenario with data
from a trailing suction hopper dredger with a hopper volurid 2000 n¥. We use the measured data of the
dredging depth:, as a disturbance. We have estimated the grain-size betweard 2 mm. The model is
carefully calibrated with the ship data and used in the modediictive controller as well as in the plant model
to simulate the performance. We choose for the total sadind discharge time a value of three and a half
hours.

Fig. 7 shows the comparison of an operator (Real Ship) walstinulated model predictive control performance.
The left figure shows poor operator performance and the fighte shows good operator performance. These
results illustrate that the Model Predictive controllerfpams slightly better than a good operator, but much
better than a poorly performing operator. The optimizateeds to a shortening in dredging time by 10 - 18
minutes, when stopping at the predicted optimal dredgimg fI;; which is given by the vertical dashed line.
This is an improvement of 10 % to 18% of the total dredging time

Fig. 8 shows the inputs computed by the predictive controllbe controller manipulates the piteh, such
that the ship sails at the maximum allowed speed of 2 m/s. iShaspredefined constraint based on examining
the data. If this constraint is not present the algorithm iyanaximize the speed to unrealistic values. In our
setting, the faster the ship sails the better the performahie controller manipulated the visor such that in
the first 20 minutes the vacuum limitation of the pump is natlated. If in this period the pump would suck
up a higher density, then the pressure drop over the pipelméd cause the pump to cavitate. Thereafter the
predictive controller manipulates the visor to maximize giroduction. The pump speed is maximal in this
example except for some deviations in the beginning whighcaused by the variable dredging depth. The
flow-rate shows an increasing trend, this is caused by theeasing draught of the ship. When the draught
increases, the geodetic head loss becomes smaller, sthéhBlbw-rate increases.

The real benefit of the model predictive control is for dredgiof finer sand, because then the hopper
sedimentation process is more important. In the followicgngrio we use the same dredging depth disturbance
as the previous example, but with an average grain-sizeed&nof 0.2 mm.

This smaller grain-size reduces the friction losses in fpelme and increases the effect of solids in the pump.
In this scenario, the inlet pressure is no longer decisiwt @edictive controller manipulates the visor angle
such that the incoming density is maximal. However, thedase in the flow-rate would result in an increase of
the overflow losses, but also in a reduction of the incomirafdpction. Therefore the controller automatically
reduces the pump speed to lower the flow-rate. Fig. 9 illtestrthe difference in performance between reducing
the pump speed and keeping it at the maximum value. This stimtdowering the pump speed improves the
production.
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Figure 8. The inputs for coarse sand: in the left column the control inputs to the system of calculated
by the predictive contraller, in the right column the resulting process behavior.

Fig. 10 shows the inputs for medium grain-size sand. Theigtieel controller manipulates the screw pitch to
sail at the maximum speed and the visor such that the maximemsity is flowing into the hopper. But it
reduces the pump speed significantly when dredging the mmedrain-size sand.

CONCLUSIONS

This paper shows a nonlinear model predictive controller.tRis controller we derived a model of the whole
trailing suction hopper dredger. It consists of four partdcl takes the sailing process, the drag head process,
the pump pipeline process and the hopper process into acddamlinearities and coupling effects between the
four processes characterize the model. To improve the grgdgerformance and find a trade off between the
excavation process (production) and the sedimentatiocess) a model predictive control strategy is proposed.
The results based on simulations lead to the following agsichs.

The excavation process mainly determines the optimal ¢iparavhen dredging coarse sand, because the sand
settles very well in the hopper. By using a model predicivateamler, simulations show an decrease in the
total dredging time between 8 and 18 minutes. There are twia neasons for the improvement. Firstly, the
controller prevents cavitation by adjusting the visor amghd controlling the incoming density. Secondly the
controller maintains a constant ship’s speed of 2 m/s bystidigi the screw pitch. The ship data showed that
due to cavitation and the resulting safety measures (opehia water valve) the flow-rate fluctuated largely
and that the ship speed varied significantly. The model ptiedi controller prevents both and therefore results
in better performance. The performance improves betweenah@®%% for the cycle production with a sailing
and discharge time of 3.5 hours. This means an increase ik preeluction between 19152 tons and 37296
tons which is approximately 1 to 2 ship loads.

For medium sand, the predictive controller uses a diffestnattegy then for coarse sand. For this type of sand,
the sedimentation process is also important for the totelopmance. In this case the controller lowers the
pump speed to improve the settling efficiency and reducedldierate to obtain a higher incoming density.
For medium sand the performance improves with 11 % for théegyroduction, compared to a strategy with
maximum pump speed.
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Figure 10. The inputs for medium grain-size sand: in the left column the control inputs to the system
calculated by the predictive controller, in the right column the resulting process behavior.
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