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ABSTRACT 

 
Dredging and mining is shifting to deeper waters. For dredging with TSHD’s the limit is around 150 m of water 
depth, but for mining the water depth can be hundreds or even thousands of meters. New technologies have to be 
developed or copied and adapted from the offshore industry. At the Delft University, Offshore Engineering, students 
carry out research into many subjects related to moorings and mooring systems, like: 
 

1. The holding capacity of drag anchors in sand.  
2. The holding capacity of drag anchors in clay.  
3. The holding capacity and operations of suction anchors.  
4. The use of the catenary equation in moorings.  
5. The methodology about choosing the right anchor for different purposes.  
6. The methodology about choosing the right anchor line for different purposes and conditions.  
7. The methodology about designing an anchoring system for FPSO’s.  
8. The methodology about designing an anchoring system for SPAR’s.  
9. The methodology about designing an anchoring system for Semi-Sub’s.  
 

The results of the research can also be found on: http://www.offshoreengineering.org. In dredging and offshore 
anchors are used for positioning, but also for operations (the cutter suction dredger). In all cases it is evitable that a 
proper estimation of the holding capacity is very useful when designing the application. 
 
The holding capacity of anchors depends on the digging depth, the soil mechanical properties end of course the 
dimensions and the shape of the anchor. The digging depth also depends on the soil mechanical properties and the 
shape of the anchor. Now the first question is of course how is the digging depth related to the soil mechanical 
properties and the shape of the anchor and the second question is, how does this relate to the holding capacity. 
 
By means of deriving the equilibrium equations of motion of the anchor and applying the cutting theories, the 
digging behavior of anchors can be simulated. The main challenges are how to model the shape of the anchor and 
how to apply the existing cutting theories to this complex shape. This paper gives a first attempt to derive 
equilibrium equations based on the cutting theory of Miedema (1987). 
 
Keywords: Dredging, anchors, holding capacity, soil mechanics 
 

INTRODUCTION 
 
This paper is the result of assignments carried out by students for the Offshore Moorings course of the MSc program 
Offshore Engineering of the Delft University. In this study an analyses is made of the penetration behavior of an 
anchor in sand. The following points are to be taken into account. 
• The geometry of the anchor and how to simplify it. 
• What happens when the anchor penetrates the soil? 
• Which forces will occur during penetration? 
• How to solve this mathematically? 

First of all, the most common anchors on the market are analyzed and a general anchor geometry will be chosen. 
This chosen geometry will be simplified to a 2D geometry, which will be realistic for a first analysis. After this step 
the penetration behavior of an anchor will be described in different phases, such a way that it is clear and easy to 
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understand. Forces on the soil layer, fluke, shank and mooring line forces will be defined and analyzed. The forces 
will be described as a function of the geometries including the relevant variable angles.  

THE GEOMETRY OF THE ANCHOR 

While searching for the best simplified anchor geometry, knowledge of the most common anchors on the market is 
needed. Vrijhof Anchors 2005 gives a good overview of the most common anchors. Two types of anchors can be 
considered, horizontal load anchors and vertical load anchors. The vertical load anchor can withstand both 
horizontal and vertical mooring forces. The horizontal anchor or drag embedment anchor can only resist the 
horizontal loads. The drag embedment anchor is mainly used for catenary moorings, where the mooring line arrives 
the seabed horizontally. The vertical load anchor is used in taut leg mooring systems, where the mooring line arrives 
at a certain angle the seabed. A good starting-point for this case is to analyze the horizontal load anchor, because this 
anchor is often used and will form an adequate challenge. To determine a simplified geometry of this horizontal 
anchor an actual figure of this anchor is needed. In the Figures 1 and 2, a sketch of the selected anchor can be found. 
 

  
 

Figure 1. Examples of anchors. 

 

Figure 2. The geometry of anchors. 
 
The actual blade (fluke) on the anchor that will penetrate the soil is represented by the horizontal part of the above 
given figure. The shank is represented by the other part of the anchor. On the end of the anchor an anchor shackle 
can be found. A first simplification will be made by modeling the anchor as a 2D model. Hereby all the calculations 
will be made easier, but the geometry is still to complex to determine all the forces. A second simplification can be 
made by supposing the anchor as two straight lines as can be seen Figure 3. This simplification is allowed, because 
this is a conceptual (first) model. When all the forces and the penetration curve of this simple model are known, a 
much more complicated model can be made. Figure 4 gives an overview of drag embedded anchors. 

246



 

Figure 3. The definition of fluke and shank. 

For the rest of the case a few assumptions must be made. First, the type of soil will be sand, this way the cohesion 
and adhesion effects can be neglected. As a next assumption, it is considered that the anchor penetrates the soil at a 
very low velocity. Therefore inertia and water tension can also be neglected. Several constrains were also made to 
simplify the 3D force analysis into a 2D analysis. This way several shear zones can be neglected. As a final 
assumption, the force acting on the point of the fluke will be neglected. This force is low considering a big anchor 
and will be fully cancelled by the force perpendicular on the shank. 

 

Figure 4. Typical drag embedded anchors (API 2005). 
 

SOIL RESISTANCE TO EMBEDDED ANCHOR LINE 
 
The forces on the embedded anchor line can be seen as a separate system in the anchor burial process and will be 
treated first. Up until 1989 the work reported on embedded anchor chains was basically theoretical. Values of the 
design parameters such as the effective chain width in sliding (Bs), the effective chain width in bearing (Bb) and the 
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bearing capacity factor in clay (Nc) were suggested, but little experimental proof confirmed their validity. With 
respect to general practice, the effective chain widths can be expressed in terms of the nominal chain diameter (D): 
 

DEWSBs ⋅=  (1) 
DEWBBb ⋅=  (2) 

 
where EWS and EWB are the parameters to express the effective widths in sliding and bearing, respectively. 
 
Vivatrat et al. (1982) developed the analytical model of a chain inside soil by assuming the chain length inside soil 
as a summation of short line segments and expressing the equilibrium conditions of each segment. The effective 
width parameters EWS and EWB proposed were 10 and 2.6, respectively and the use of a value for Nc between 9 
and 11 was suggested. 
 
Yen and Tofani (1984) performed laboratory measurements on sliding and bearing soil resistances on a ¾ inch 
diameter stud-link chain in very soft silt. During cutting and sliding tests, the maximum soil resistances were 
established to be mobilized within a small movement of chain, even less than half a link. The EWS parameter can be 
determined from laboratory tests and varies between 5.7 and 8.9. The Nc factor at a particular depth was found to be 
between 7.1 and 12.1, considering the EWB parameter to be 2.37. 
 
Using the finite segment approach, Dutta (1986, 1988) derived the nodal equilibrium equations for chain segments 
and proposed a simple calculation method. This study showed good agreement with the results obtained by the 
analytical method used by Vivatrat et al. (1982). 
 
Degenkamp and Dutta (1989) derived a more accurate analytical model of embedded chain under soil resistance and 
a simple calculation procedure. They used a soil model to accurately predict the soil resistances to the chain inside 
soil and estimated critical design parameters, such as effective widths of chain, based on laboratory tests. 
 
Assuming: (1) Chain elements are inextensible; (2) due to the chain shift, the soil medium suffers an undrained 
loading condition; (3) soil in the vicinity of the chain reaches limit state of stress and thereby develops ultimate soil 
resistances; and (4) the shear strength and weight of the soil over a chain element are constant. The forces on a chain 
element are as presented in Figure 5. 
 

 
Figure 5. Force system on an embedded anchor line. 

 
Assuming sΔ  is small, equilibrium in tangential direction leads to: 
 

)sinwf(
s
T

1Φ+−=
∂
∂  (3) 
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and by using the incremental integration approach, one can write: 
 

)sinwf(sTT 112 Φ+Δ−=  (4) 
 
Equilibrium in normal direction ( sΔ  is small) leads to: 
 

s
s
TT

coswP
s

1

Δ
∂
∂

+

Φ−
=

∂
φ∂  (5) 

 
or, for discrete elements, applying the incremental approach: 
 

2

1
12 T

s)coswp( ΔΦ−
+Φ=Φ  (6) 

 
 
The entire embedded chain configuration can be assumed to be a summation of the discrete chain elements. For each 
element, the value of 2T  and 2Φ  can be determined using the known values of 1T , 1Φ , w , f  and p . To 
determine f  and p , the tangential movement has been assumed to cause an uncoupled sliding resistance, 
independent of the normal soil resistances. Using this assumption, the frictional resistance is written as: 
 

us SBf α=  (7) 
 
And the normal soil resistance is written as: 
 

qBp b=  (8) 
 
The value of q  is evaluated using the formula given by Skempton (1951) for the ultimate net soil resistance of a 
strip footing: 
 

ucSNq =    Where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

b
c B

h2.0114.5N  (with a maximum 6.7Nc = ) (9) 

 
From these equations, it can be seen that the accuracy of p  and f  are governed by the factors (EWB x cN ) and 
(EWS x α ) respectively. Extensive testing led to the next values: 

• For very soft (Su = 5 kPa) clay: EWB = 2.5,  EWS = 8.0   
• For firm (Su = 34 kPa) clay: EWB = 2.3, EWS = 7.2  
 

Grote (1993) used the exact same approach and values obtained by Degenkamp and Dutta (1989) to determine the 
force distribution and geometric profile of the embedded anchor line in his work to simulate the kinematic behavior 
of work anchors. 
 
Neubecker and Randolph (1994, 1995) derived closed form expressions for both the load development and chain 
profile to avoid the numerical solution by an incremental integration technique used by Degenkamp and Dutta (1989) 
and simplify the procedure. Their work corroborates the results found by Degenkamp and Dutta. For the typical case 
where the chain angle at the seabed is zero, the expression becomes: 
 

QD
2

T 2
aa =

θ
 (10) 
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The expression for frictional development along the chain was derived as: 
 

ae
T
T

a

0 μθ=  (11) 

 
In addition they found formulations for the embedded anchor line in sand using the same approach, but changing the 
bearing capacity factor. For non-cohesive soils, the bearing pressure q  may be expressed in terms of a standard 
bearing-capacity factor qN  as: 
 

zNq '
qγ=  (12) 

 
THE KINEMATIC BEHAVIOR OF DRAG ANCHORS IN CLAY 

 
Grote (1993) derived a dynamic model to describe the anchor embedment. He described the forces on the anchor as 
illustrated in Figure 6. The forces on the anchor consist of its weight, shear and normal forces on both fluke and 
shank and the tension force from the anchor line pulling the anchor. The fluke force ff  is calculated with a 
transformation of the cutting formula of Miedema 1987. Grote states that the force on the fluke depends on the depth 
and velocity of the anchor and a constant, containing soil specific properties. This leads to a quantitative formula of 
this force: 
 

ba )velocity()depth(Cff =  (13) 
 

 
Figure 6. Forces on an embedded anchor. 

 
The second force on the fluke, fff , is a front force on the fluke caused by the bearing capacity of the surrounding 
soil. This same force is present at the shank of the anchor and called fsf . They are both calculated with the formula 
for the bearing resistance of a strip footing formulated by Terzaghi: 
 

)dNN
2
BcN(Afsffff qcfront γ+

γ
+== γ  (14) 

 
For no free-draining soils as clay, it can be assumed that the internal friction angle 0=φ  and 1Nq = . The second 
term is small compared to the last one, so equation 16 can be simplified to: 
 

)dcN(Afsffff cfront γ+==  (15) 
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fss  is a shear force on the shank. In clay ground the angle of internal friction is assumed zero while the cohesion is 
not. The shear stress where failure occurs is then equal to the cohesion, which is equal to the undrained shear 
strength. 
 

ushearsAfss =  (16) 
 
And finally, ft  is the force on the pad eye implied by the anchor line. 
 
Steward (1992) published methods to describe the kinematic behavior of drag anchors in cohesive soils. These 
methods were simplified by Neubecker and Randolph (1995) who formulated bearing capacity and moment 
equilibrium calculations utilizing two fundamental anchor resistance parameters, f  and wθ . The assumption that a 
drag anchor travels parallel to its flukes is widely accepted. Therefore the authors expressed a geotechnical 
resistance force pT  acting on the anchor parallel to the direction of the fluke, illustrated in Figure 7, as: 
 

ucpp sNfAT =  (17) 
 
Since there will also be geotechnical forces normal to the fluke, the resultant resistance force wT  acting on the 
anchor will make an angle wθ  with the fluke. 

 
Figure 7: anchor parameter, wθ  

Therefore: 
 

w

p
w cos

T
T

θ
=  (18) 

 
The pad eye force aT  can be determined as the resultant of wT  and the anchor weight aW . As the anchor embeds, 
the upper fluke surface and resultant force aT  will be at angles of β  and aθ  respectively to the horizontal. 
Allowing for the offset angle ψ  between wT  and aT , it then follows that: 
 

aw θ−ψ+θ=β  (19) 
 
Neubecker and Randolph (1994, 1995) also developed an expression for the anchor chain tension and angle at the 
anchor padeye assuming the chain angle at the seabed is zero: 
 

QD
2

T 2
aa =

θ
 (20) 

 
Every anchor can be considered to have unique properties f  and wθ  that are independent of the anchor size or the 
soil strength profile, and can be determined by experimental modeling or comparison against published field data. 
The equations described above can then be implemented into an incremental simulation as follows: 
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1. Assume an anchor fluke orientation β  and displace the padeye horizontally an increment xΔ . 
2. Calculate the new embedment depth D, assuming motion parallel to the previous fluke orientation. 
3. Calculate the anchor resistance aT  from the anchor characteristics, anchor orientation and local soil strength. 
4. Calculate the chain angle aθ  using equation 20. 
5. Calculate the new fluke angle β  using equation 19 in order to maintain equilibrium. 
6. Displace the padeye a further increment xΔ  and loop to step 2. 
 
By adjusting the variables involved, the authors showed agreement with centrifuge and full-scale tests. 
 
Thorne 1998 developed a theory from geotechnical principals, without the use of any site or anchor specific 
correlations. His predictions of the anchor movement showed good agreement with nine full scale tests covering 
three different sites and five anchor types. The equations used are based on the proposition that no movement will 
occur until the soil forces acting parallel to the fluke are overcome. The motion of the anchor results in the soil 
around the shank failing in bearing capacity on the underside and in shearing on the base and sides, exerting on the 
shank the maximum force of which the soil is capable. This is also true for other elements which have to be dragged 
through the soil like shackles, palms and stabilizers. These forces are calculated as: 
 

uii SDFDADrag =  (21) 
 
where iDA  and iDF  are the area and drag factor for the “ith” component, acting at an angle iα  to the plane of the 
fluke on the anchor element (Figure 8). 
 

 
Figure 8. The anchor model. 

 
Figure 9. The force application points. 

 
There are three drag components: base bearing and skin adhesion of the base (acting at right angles to the element), 
and skin adhesion on the sides (acting parallel to the fluke). The drag factors are shape dependant and taken from 
geotechnical research on soil forces on cylinders, flat plates, wedges and strip footings. All forces are assumed to act 
at the centers of the respective areas and the undrained shear strength is taken as that at the centre of area. The forces 
of each element can be added to give the total drag force components normal and parallel to the fluke and the 
moments about the fluke centre of area: 
 

∑
=

=
α−=

ni

1i
iuii sinSDFDATDFN  (22) 

∑
=

=
α+=

ni

1i
iuiiuff cosSDFDASDFDATDFN  (23) 
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∑
=

=
α+α=

ni

1i
iiiiuii )cosDistysinDistx(SDFDATDFM  (24) 

 
Considering an anchor with its fluke at an angle θ  to the horizontal, the centre of area of the fluke at a depth D  
below the seabed and the anchor chain at an angle aθ  to the horizontal (Figure 9), the equilibrium equations are: 
. 

θ−=θ+θ sinWTDFP)cos(T aa  (25) 
TDFNcosW)sin(TF aan −θ−θ+θ=  (26) 

{ } )cosXsinY(WTDFM)cos(S)sin(STM wwayaxa θ+θ−+θ+θ−θ+θ=  (27) 
 
 
To solve this force system with the four unknowns M , aT , nF , aθ , one more equation is needed. Thorne used the 
closed form expression given by Neubecker and Randolph 1995 for the anchor shackle tension, aT , and the angle of 
the chain at the anchor to the horizontal, aθ : 
 

QD
2

T 2
aa =

θ
 (28) 

 
The proposed approach for progressive penetration is based on the pressure distribution over a flat plate. An anchor 
fluke is considered, B long and L wide, at some position acted upon by a normal force, nF , and a moment, M , 
which results in the idealized contact pressure distribution abcd and stress changes as the plate is moved a distance 

sδ  (Figure 10). 

 
Figure 10. The pressure distribution. 

 
These stress changes can be considered as a loading on the plate consisting of an equivalent normal force and 
moment acting at the centre of area. 
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Now the incremental normal and angular deflections of the fluke after the movement sδ  are assumed to be 
proportional to eqF  and eqM  with proportionality constants 1K  and 2K  respectively. 1K  and 2K  are functions 
of the elastic modulus of the soil, the plate size and the relative depth of the plate. If the plate moves a total distance 

S  parallel to its plane, there will be 
s

S
δ

 increment and the resulting total deflections of the centre of area, nδ  and 

θδ  are: 
 

)
B
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B
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To allow estimation of the response of a real anchor fluke, an equivalent rectangular fluke is used with the same 
centre of area and absolute first moment of area. For a rectangle, the values of 1K  and 2K  are based on research 
done by Lee (1962), Whitman and Rickart (1967), Butterfield and Bannerjee (1971) and Rowe and Davis (1982) on 
deflection coefficients for a buried plate (Figure 11): 
 

 
Figure 11. The deflection coefficients for a buried plate. 
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The term mI  takes account of the aspect ratio of the rectangle, dI  takes account of the depth effect, cE  is a 
reduction factor to take account for post yield behavior and uE  is the undrained elastic modulus of the soil.  
 
The analysis of progressive movement now proceeds as follows. Assume the fluke moving a distance S , parallel to 
its plane, from an old position (n-1) to a new position n and rotating an angle '

θδ  from the initial angle 1n−θ  to an 
angle nθ . The statics can be solved to find nF  and M  for equilibrium. Now using the progressive penetration 
approach as described above, it is possible to estimate the angular displacement θδ  which would occur if this 
combination of nF  and M  were applied to the plate. Repeating this for various angular displacements until 

'
θθ δ=δ  will result in the angle θ  for this step. The drag distance (horizontal movement), IDD , of the anchor from 

position n-1 to n is then calculated as: 
 

nn
n1n

1n sin

2
tan

sinS
IDD θδ+

⎟
⎠
⎞

⎜
⎝
⎛ θ+θ

θ
=

−

−  
(35) 

 
and the new depth for step n+1, 1+nD , is calculated as below and the whole process is repeated. 
 

nnnn1n sinScosDD θ+θδ−=+  (36) 
 
A value of B0.1S =  was adopted for calculation. 
 
Finally the American Petroleum Institute 2005 gives a graph for the holding capacity in soft clay based on the ratio 
of the weight of the anchor and the holding capacity. This graph is shown in Figure 12, and gives lines for different 
types of anchors. Of course this graph shows a worst case scenario based on soft clay. 
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Figure 12. Anchor holding capacity in soft clay (API 2005). 

 
THE KINEMATIC BEHAVIOR OF DRAG ANCHORS IN SAND 

 
Compared to the behavior of an anchor in clay, the weight of the soil above the anchor plays an important role in 
non cohesive soils like sand. 
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Le Lievre and Tabatabaee 1981 proposed a limit equilibrium method. This method has been shown to give 
reasonable predictions of the ultimate holding capacity of drag anchors in sand, for a given depth of embedment. 
However, several assumptions in the analytical procedure make it unsuitable for application to a drag anchor during 
embedment, and hence the approach does not allow prediction of the depth to which the anchor will embed, and thus 
the actual capacity. A schematic representation of the failure mode and force system adopted by Le Lievre and 
Tabatabaee is shown in Figure 13. 
 

 
Figure 13. Soil failure mode and force system. 

 

 
The proposed solution procedure followed in a stepwise manner: 
 

1. Assume a failure wedge angle, λ , of the soil. 
2. For the particular failure wedge angle, λ , calculate the mobilized mass of soil, sW . 
3. For the particular failure wedge angle, λ , calculate the side friction, SF. The side friction is assumed to be 

the force required to overcome the lateral earth force acting on the soil wedge area, hence: 
 

dA)tan(zKSF
Area

s φγ= ∫  (36) 

 
4. From the force polygon of the soil wedge plus anchor (Figure 13), solve for the two unknowns of chain 

tension, aT , and soil reaction, R . 
5. From either of the other two force polygons of soil wedge only, solve for the values of shank force, sF , and 

fluke force, fF . 
6. Go back to step 1 and repeat with a different value of λ . Stop procedure after minimum chain tension is 

calculated. This value is the best upper bound solution to the problem. 
 
Grote (1993) defined a force model shown in Figure 10. His problem approach is the same for clay as for sand 
grounds only the formula’s for the ground resistances are different. 
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Figure 14. Forces on an embedded anchor. 

 
The fluke force ff  is calculated with a quantitative formula: 

 
ba )velocity()depth(Cff =  (37) 

 
The second force on the fluke, fff , is a front force on the fluke caused by the bearing capacity of the surrounding 
soil. This same force is present at the shank of the anchor and called fsf . They are both calculated with the formula 
for the bearing resistance of a strip footing formulated by Terzaghi: 
 

)dNN
2
BcN(Afsffff qcfront γ+

γ
+== γ  (38) 

 
where cN , γN and qN  are the bearing capacity factors, c the cohesion of the soil, γ  the unit weight of the soil, B  
the width of the footing (here fluke and shank) and d  the depth of the bottom of the footing. For free-draining soils 
such as sand, the cohesion c  is thought to be zero. The second term is small compared to the last one, so equation 
38 can be simplified to: 
 

)dN(Afsffff qfront γ==  (39) 
 
To take account for the under pressure that can occur during anchor burial, the author used a empirical equation 
which is a combination of the foundation theory of Terzaghi and the cutting theory of Miedema set up by Becker et 
al. 1992: 

 

)p
2
d(NAfsffff watersoilqfront Δγ+γ==  (40) 

 
where pΔ  is the pore under pressure that follows from the cutting theory of Miedema. 
 
fss  is a shear force on the shank. In sand ground the horizontal stress is assumed to be a function of the vertical 
ground force: 
 

dK soilγ=σ  (41) 
 
Using this relation, the formula used for the shear force is: 

 
)tan(dKAfss soilsteelsoilshear −φγ=  (42) 
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For K  the value 2 was taken. This value applies for piles driven into sand that densifies at the pile tip due to the 
driving vibrations. And finally, ft  is the force on the pad eye implied by the anchor line. 
 
Neubecker and Randolph 1995 based their approach on the method of LeLievre and Tabatabaee 1981. They 
extended this method to incorporate: 

• a more realistic 3-dimensional failure pattern in the soil, 
• a force acting on the back of the fluke. 

The latter modification is particularly important at shallow penetrations, when the bearing capacity of the anchor 
shank is insufficient to provide equilibrium (Figure 15). 
 

 
Figure 15: General force model 

 
The authors suggested that the force on the shank is dependent on its size and shape and should be calculated from a 
bearing capacity viewpoint. Thus: 

 
qssss NdAF γ=  (43) 

The normal self-weight term ( γγNb
2
1 ) is omitted in equation 44, because it is assumed to have a relatively small 

contribution and even the qsN  alone tends to over predict the shank resistance. 
 
The 3-dimensional failure mode 
 
Dickin 1988 presented an overview of some of the various methods that have been developed to evaluate the pullout 
resistance of a flat plate (Figure 16). 
 

 
Figure 16. Slip surfaces used for flat plate pullout: (a) Majer 1955; (b) Vermeer and Sutjiadi 1985. 

 
It was considered that the simple method of Majer (1955) consistently underestimated the pullout capacity of the flat 
plate, while the model of Vermeer and Sutjiadi (1985) gave predictions that compared well with observations. 
Neubecker and Randolph incorporated the model of Vermeer and Sutjiadi into the drag anchor problem as illustrated 
in Figure 17. 
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Figure 17. 3-dimensional failure mode. 

 
The fluke can be thought of as being mapped onto the soil surface by the displacement vector of the soil wedge. The 
failure planes are inclined at the dilatation angle, ψ , to the displacement vector so that, when they reach the soil 
surface, the distance they are away from the fluke shadow is proportional to the depth of the original point. This 3-
dimensional soil failure mode is still an idealized failure mode for the soil. However it does result in a more realistic 
description of the failure surface. The area, A , can be written as: 

 

2
tanH

tan2
hHA

222 λ
+

β
−

=  (44) 

 
A simplification is made in the calculation of the cross-sectional area, A , in that a vertical slip surface is assumed 
behind the fluke, rather than an inclined one. This is supposed to have a minor effect on the balance of forces, as low 
active pressures are involved. However, no shear force is assumed across this surface and as such the extra soil mass 
included by this idealized failure mode counteracts the shear force that is neglected from the realistic failure mode.  
The lateral extent of the failure wedge, X , is determined from simple geometry. 
 

)cos(
tanHX

ψ−λ
ψ

=  (45) 

 
Using a pyramidical approximation for the sides of the wedge, the mobilized soil mass, sW , is expressed as: 
 

⎟
⎠

⎞
⎜
⎝

⎛
γ+γ= X

3
2BAWs  (46) 

 
The side friction, SF , that is to be used in the limit equilibrium equations is obtained from Vermeer and Sutjiadi 
1985. 
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)sinsin1(cos4
)sin(sin)hH(LSF '

'2

ψφ−ψ

ψ−φ+γ
=  (47) 

 
Figure 18 and 19 show the system of forces with free body diagrams and force polygons for the soil wedge only, the 
anchor only and the combined anchor-soil body. 
 

 
Figure 18. Free body diagram. 

 
Figure 19. Force polygons. 

 
The limit equilibrium calculation procedure is executed in the same way as that of Le Lievre and Tabatabaee 1981 in 
that the chain tension is calculated for a given failure wedge angle, λ , which is than varied until the chain tension 
reaches a minimum. The procedure begins however, by initially examining force equilibrium on the soil wedge only. 
The soil mass, sW , and the side friction, SF , are calculated using equations 46 and 47, respectively, for the 3-
dimensional soil wedge. The shank force, sF , is calculated from the standard bearing capacity calculations from 
equation 43. The two unknown forces on the soil wedge, which are the fluke force, fF , and the soil reaction, R , 
can be calculated from horizontal and vertical force equilibrium requirements. The force equilibrium of the anchor 
only is considered now. The fluke force, fF , is defined from the previous equilibrium calculation, the weight of the 
anchor is known and the shank force, sF , is calculated from equation 43. Again, there are only two unknown forces 
left for solution by force equilibrium, namely the force on the back of the fluke, fbF , and the chain tension, aT . The 
failure wedge angle, λ , is then varied and the process repeated to obtain a minimum upper bound estimate of aT . 
The solution of this force system still proceeds using simple limit equilibrium methods, however, the equilibrium 
solution is applied in a two step manner to arrive at a chain load and the introduction of an extra unknown and an 
extra equation has resulted in a more realistic force system acting on the anchor. 
 
Finally the American Petroleum Institute 2005 gives a graph for the holding capacity in sand based on the ratio of 
the weight of the anchor and the holding capacity. This graph is shown in Figure 20, and gives lines for different 
types of anchors. 
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Figure 20. Anchor holding capacity in sand (API 2005). 

 
 

Miedema et al 2006 derived a model based on 4 different penetration phases. The model is described below. 
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PENETRATION PHASES 
 
Phase 1: No penetration 

 
In this first situation the anchor lies on the bed of soil and the fluke/shank angle will be considered as a minimum. 
When pulling on the mooring line the anchor will scratch over the seabed, see Figure 21. A bed of soil will be 
formed in front of the fluke and will give some resistance. Because of this resistance, an angle κ will reach its 
maximum at a certain point. At that certain point, the bed of soil in front of the fluke will give his highest resistance 
and it will become easier to penetrate than scratching over the seabed. When the assumption of a perfect sharp fluke 
point is made, the point load can be neglected. 
 

  
Figure 21. The anchor on top of the soil in phase 1. 

 
Phase 2: Penetration causes fluke forces 
 
When the fluke starts to penetrate (Figures 22 and 23), the cutting theory of Miedema 1987, can be used. Forces that 
will play a role in the force balance are the fluke forces. When the angles on the fluke are considered, a few 
assumptions can be made. First of all the fluke/shank angle κ will be constant and will have its maximum value. The 
internal friction and the external friction angles are also constant. These parameters are only depending on the 
material of the anchor and soil mechanical properties. 
 

 
Figure 22. The fluke penetrating the soil in phase 2. 

 

 
Figure 23. The fluke in the soil. 
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As discussed before the cohesion, adhesion, inertial forces and water tension can be neglected. According to Figures 
24 and 28, a force balance can be calculated.  
 
The shear force and the normal force are related according: 
 

1 1 tanS N ϕ=  (48) 

2 2 tanS N δ=
 

(49) 
   
The grain forces will be: 
 

( )2 2
1 1 1K S N= +  

(50) 

( )2 2
2 2 2K S N= +  

(51) 

 
The weight of the soil can be given as a force according: 
 

2 2 2 2sin sin
2 tan 2 tan

x xG α α γ
α β

⎛ ⎞
= + ⋅⎜ ⎟

⎝ ⎠  
(52) 

 
Horizontal equilibrium of forces:  
 

( ) ( )1 2sin sin 0K Kβ ϕ α δ⋅ + − ⋅ + =  
(53) 

 
Vertical equilibrium of forces: 
 

( ) ( )1 2cos cos 0K G Kβ ϕ α δ− ⋅ + + − ⋅ + =  
(54) 

 

 
Figure 25. The forces on the fluke. 
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Figure 24. The forces on the soil layer. 
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The force K2 on the fluke is important to determine the horizontal and vertical acting forces on the fluke (Figure 25). 
 

( )
( )2

sin
sin

G
K

β ϕ
α β ϕ δ
⋅ +

=
+ + +  

(55) 

 
The following forces are acting on the fluke blade: 

• The Horizontal Force  

( )2 sinhF K α δ= ⋅ +  
(56) 

• The Vertical Force 

( )2 cosvF K α δ= ⋅ +  
(57) 

     
The force Fp can be neglected as discussed before.  
 
Phase 3: Penetration causes fluke and shank forces 
 
In this situation the fluke is completely covered by sand and the shank will become an extra factor which will cause 
penetration resistance, see Figures 26 and 27. For the shank the cutting theory of Miedema 1987, can’t be used. The 
strip footing theory, as described in Verruijt (2000), will be used for determining the shank resistance. The 
maximum shank resistance acts when the complete shank is penetrated.  
 

 
Figure 26. The shank penetrating the soil in phase 3. 

 
In this paragraph you will find the modeling of the forces on the fluke and the shank. The influences of the angles 
will be given. The cutting theory of Miedema (1987) is still valid for the fluke part of the anchor forces. For 
determining the forces on the shank, the strip footing theory, as described in Verruijt (2000), will be used. For phase 
3, two shear zones are taken into account. This will lead to a geometry as shown in Figure 28. 
 

 
Figure 27. The fluke and shank in the soil. 
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Figure 28. Forces on the soil layer. 
 
As discussed before; the cohesion, adhesion, inertial forces and water tension can be neglected. For the Figures 28 
and 30, a force balance can be calculated. The shear force and the normal force are related according: 
 
The shear force and the normal force are related according: 

1 1 tanS N ϕ=  (58) 

2 2 tanS N δ=
 

(59) 

 
The grain forces will be: 

( )2 2
1 1 1K S N= +  

(60) 

( )2 2
2 2 2K S N= +  

(61) 

 
The weight of the soil can be determined by using the geometry of Figure 29, so the weight of the soil will be: 

¦¦¦¦¦
AG γ= ⋅

 
(62) 

 

 
Figure 29. The dimensions of the soil layer. 
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with: 
 

( )

2

¦¦¦¦¦

2
2

y*sin( - )+L*sin( ) y *sin( -A := (y*sin( - )+L*sin( ))* L*cos( )+
tan( ) 2*tan( )

y*sin( - )+L*sin( )1 *L *sin( )*cos( )
2 2*tan( )

κ α α κ ακ α α α
β β

κ α α
α α

β

⎛⎛ ⎞
− ⎜⎜ ⎟

⎝ ⎠ ⎝
⎛ ⎞

− − ⎜ ⎟
⎜ ⎟
⎝ ⎠

(63) 

Forces on the fluke and the shank 
 
For the determination of the forces on the fluke and the shank, Figure 30, two different theories will be used. For the 
fluke the cutting theory of Miedema is valid, therefore forces on the soil layer and on the fluke are the same as 
discussed in phase 2. For the forces on the shank the strip footing theory can be used. This theory is based on the 
fundamentals of Brinch Hansen and is a generalization of the Prantl theory. This can be found in Verruijt 2000. 

 

 
Figure 30. The forces on the anchor. 

 
To determine the friction Brinch Hansen force P on the shank we can make use of: 
 

1
2c c c q q qP i s cN i s qN i s BNγ γ γγ= + +

 
(64) 

 
Where c is cohesion and q is the external load on the soil 
 
Because c and q are zero in this case (no cohesion and no external force on the soil), P will only be a function of the 
soil weight part of the function, so: 
 

1
2

P i s BNγ γ γγ=
 

(65) 

 

Hereby iγ   is a correction factor for inclination factors of the load. The factor sγ  is a shape factor for the shape of 
the load. 

In this case, only a load perpendicular to the soil will be considered, so iγ  will be removed from the formula.  

Inserting Nγ : 
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2 tan1 sin1 0,3 1 tan
1 sin

BP B y e
y

π φφγ φ
φ

⎛ ⎞ ⎛ ⎞+
= − −⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠  

(66) 

 
Now the friction part of the shank has to be determined. For the friction of the shank, the next formula is valid: 
 

Ffriction = σn tan(δ) y h (67) 
 
It is possible now to plot the results for P and Ffriction (see Figure 31) then it is possible to find out if the downward 
force of the fluke is big enough to pull the shank through the seabed and further. 
 
It is also possible now to make a total force and moment balance, to predict the trajectory of the anchor. 
 

 
Figure 31. The forces on the anchor. 

 
Phase 4: Penetration causes fluke forces, shank forces and mooring line forces 
 

 

Figure 32. The mooring line penetrating the soil in phase 4. 
 

The fluke and the shank are completely covered by sand (Figures 32 and 33). When there is still no equilibrium, a 
part of the mooring line will enter the soil. The mooring line penetration will lead to an extra factor which will cause 
penetration resistance. The anchor becomes stable when there is a balance between the vertical and horizontal forces 
on the anchor part, which is covered by sand. 
 
In this phase you will find the modeling of the forces on the fluke, the shank and the mooring line. The cutting 
theory of Miedema is still valid for the fluke part of the anchor forces. For determining the forces on the shank and 
the mooring line we will use the strip footing theory as discussed in Verruijt. 
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Figure 33. Fluke, shank and mooring line in the soil. 

 
The soil layer properties can be interpreted in a same way as described in phase 3. So this way the function for G is 
still valid. 
 

 
Figure 34. Forces on the fluke, shank and mooring line. 

 
To determine the forces on the anchor for this situation the theory as discussed in phase 3 is valid. For the mooring 
line forces (Figures 34 and 35) we will also use the Brinch Hansen theory as discussed in Verruijt 2000.  
 
The penetration of the mooring line causes resistance perpendicular to this line (penetration resistance, see Figure 
36). This effect is noticeable in all soil conditions. The type of mooring line will determine the value of this 
resistance. Think of a wire rope mooring line which penetrates deeper (less resistance) than a chain mooring line. 
During the penetration process of the anchor, the resistance increases when depth increases, which is related to the 
position of the anchor. 
 
The mooring line penetration can be described by the following geometry: When looking at the point where the 
anchor becomes stable, a force and moment balance can be made out of all the forces on the anchor and mooring 
line. In fact this is the moment were the anchor reaches his maximum holding capacity. 
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Figure 35. The forces on the anchor. 

 

 

Figure 36. The forces on the mooring line. 
 

Vertical equilibrium of forces: 
 

0v v rv v vF P F M T− − − − =  (68) 

 
Horizontal equilibrium of  forces: 
 

0h h rh h hF P F M T+ + + − =  (69) 
 
Moment balance to point A: 
 

( ) ( ) ( ) ( )

( ) ( )

1 1 1 1cos sin cos sin
2 2 2 2

cos sin 0

v h v rv h rh

v h

F L F L P F y P F y

T y T

α α κ α κ α

κ α κ α

− ⋅ − ⋅ + + ⋅ − + + ⋅ −

+ ⋅ − + ⋅ − =  

(70) 
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CONCLUSIONS AND RECOMMENDATIONS 

In the penetration behavior the different forces and moments in all four phases can be described with the theory dealt 
with, in this document. These forces and moments are a function of the anchor geometry. The holding capacity of 
the anchor is described as well as a function of the depth and the geometry. To predict the trajectory of the anchor 
during the penetration, one has to find a relationship between the different forces and moments on the anchor and 
the trajectory of the anchor. The anchor trajectory will stop when the different forces are in equilibrium, or when the 
pull force will be too high for that particular anchor, at a certain depth. In the last case, the pull force necessary to 
penetrate deeper in the soil, is higher then the maximum holding capacity of that particular anchor at a certain depth. 
to that point the maximum holding capacity is reached (see Figure 37). When pulling further, the anchor will be 
pulled out and looses his function. 

 

Figure 37. Holding capacity vs. anchor trajectory. 
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LIST OF SYMBOLS USED 
 
As The area of the shank m2 
B Width of the shank m 
Bs The effective chain width in sliding m 
Bb The width of the footing, which is the chain width in bearing m 
c Cohesion kPa 
C Catenary force kN 
d Depth of bottom footing m 
D the pad eye embedment depth m 
f Anchor form factor - 
f soil frictional resistance per unit chain length kN/m 
h Height of the shank m 
h the depth of the footing. m 
L Total fluke length m 
M Resistance on mooring line kN/m 
Nc Baring-capacity factor for clay - 
Nγ Bearing cpacity factor - 
Nq Bearing capacity factor - 
p soil normal/bearing resistance per unit chain length kN/m 
q the normal ultimate soil pressure kPa 
Q the average bearing resistance of the chain in the soil kN 
Su the undrained shear strength of the soil kPa 
Δs chain element length m 
T Anchor pull force kN 
Ta the chain load at the anchor pad eye kN 
T0 the chain load at the seabed kN 
T1 chain tension at the top of the chain element kN 
T2 chain tension at the bottom of the chain element kN 
w effective chain weight in soil per unit chain length kg/m 
y Length of the shank in the sand m 
z Depth m 
α Angle of the fluke in the sand rad 
β Angle of the shear zone, inclination fluke rad 
ϕ Internal friction angle of the sand rad 
δ External friction angle fluke/sand rad 
χ Length of the fluke in the sand m 
γ Density of the in situ sand ton/m3 
κ Angle between fluke and shank rad 
φ Internal friction angle sand rad 
μ the friction coefficient between the chain and soil  
α a reduction factor (= 1 for soft clay) - 
σn Normal stress on the area of the shank N/m2 
Φ1 chain angle at the top of the chain element rad 
Φ2 chain angle at the bottom of the chain element rad 
θa the chain angle at the anchor padeye rad 
λ Failure wedge angle rad 
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