FC

Water Injection Dredging (WID) in the US, Challenges & Solutions

Joe Wagner, PE, D.NE, BCEE |<u>Joe.Wagner@HDRInc.com</u> Robert Lewis, EIT |<u>Robert.Lewis@HDRInc.com</u>

Port of Wilmington, Turning Basin

Outline

- Traditional Dredging Methods
- Hydrodynamic Dredging
 - Agitation & Plow
 - Tiamat Harwich Haven Authority (HHA)
 - Water Injection Dredge (WID)
 - Environmental Considerations
 - Economic Benefits
- Case Study

 North Carolina State Ports Authority (NCSPA)

The Future

o NCSPA Federal Turning Basin

 USACE-NAO (Norfolk District & Virginia Port Authority (VPA)

Kansas Water Office (KWO)

Hydraulic Cutter Suction Dredge

DEL BAS

CS0 450

Courtesy Damen

Mechanical Backhoe Dredge

Ser.

Courtesy Boskalis

Comparison of Dredging Techniques

Hydraulic & Mechanical Dredging

are *traditional dredging* techniques that hydraulically or mechanically remove sediments from a waterbody \mathcal{S}

In comparison, all *Hydrodynamic Dredging* techniques horizontally transport the dredged material, *entirely within the water column*

All *Hydraulic & Mechanical Dredged* sediments are *transported* using buckets, pipeline, hoppers, barges, etc.

All *Hydrodynamic Dredging* sediments *flow through the*

water from the dredge area to the final disposal area

Water Injection Dredge, Damen, Netherlands

Dredging Methods - Hydrodynamic Dredges

11 E

F3

Types of Hydrodynamic Dredges

Agitation & Plow Dredging disperses the sediments from the bottom into the *whole water column* Water Injection Dredging fluidizes
 the sediments, creating a near-bottom
 density current with higher density than the surrounding water

FD

Boskalis Terra Plana Plough Dredge

Hydrodynamic Dredges – Agitation & Plow Dredging

Boskalis

TERRA PLANA

*

CALL BOOM

FX

8

Hydrodynamic Dredging - Agitation & Plow

Agitation & Plow Dredging require:

- Equipment that suspends sediments into the water column
- 2) Water flow that transports the sediment away from the site

Various means can be used for this process, including

- Prop-Wash
- Hopper Dredge overflow
- Vertical mixers or Air Bubbles
- Drag beams or Rakes (Plow Dredging)

Agitation & Plow Dredging produce a turbid water column & thus, at least temporarily, higher water quality impacts

FJS

Osprey WID, IHC-America, NCSPA

Hydrodynamic Dredges – Water Injection Dredges

.inn

FX

.....

11

Sta 2A

-

1

Water Injection Dredging

WID pumps water into channel bottom sediments at relatively *high-volume & low pressure*

WID allows sediments to flow horizontally out of a waterbody, while the *fluidized sediment layer* remains close to the bottom

The objective is to remove the material from a selected area by taking advantage of the near-bottom *density current*

- Tides
- Currents
- Gravity
- Other Hydrodynamic Forces

Density Current Demo

THE PARTY PARAMETERS IN THE PARAMETERS INTERS INTERS

其他集团的市场的最高大学会总是大学会制作。

-

1953

A 9. K.

THE REPORT OF A REPORT OF A

Ð

Water Injection Dredging (WID)

Courtesy Van Oord

WATER INJECTION DREDGING

ICH DFF

8.

ALCH ONIGH

쎪

MER SI

Environmental Considerations

WID cannot be used where *unacceptable environmental impacts* may occur

- Contaminated resuspension
- Suspended solids effects
- Site specific impacts

Sediment transport modelling is required to determine the destination of *dredged sediments*

WID has the *ecological advantage* as it does not disturb the sediment distribution & waterbody balance

All *WID* sediments *must be analyzed* & most sediments will be appropriate for the dredging technique

Parameters that influence *WID* production include:

- Soil characteristics
- Site bathymetry & geometry
- Hydrodynamic conditions
- Geographic location
- Type & level of contamination
- Regulatory agency acceptance

Economic Benefits

Traditionally dredged sediments

require more costly transportation, using pipelines, buckets, hoppers, barges, etc.

Traditional dredged sediments

require acquiring placement or disposal areas for the storage

In comparison, for all *hydrodynamic dredging* (including WID) the dredged material is transported *entirely within the water column*

In comparison, for all *hydrodynamic dredging* (including WID) techniques the sediments *flow through water*

Traditional dredging costs:

- Mobilization/Demobilization
- Transportation & Storage
- Complex dredge plant O & M
- Lower production rates

Optimized hydrodynamic dredging

- Rapidly moved on short notice
- Don't require disposal facilities
- Reduced dredge plant O & M
- Higher production rates

USACE NDC Dredging Costs (1963-2020)

- Overall US dredging volumes decreased:
 - USACE CY has decreased by ~277%

 $_{\odot}$ Industry CY has decreased by ~25%

 $_{\odot}$ Overall, CY has decreased by ~70%

- Overall US dredging costs (adjusted for inflation) increased:
 - $_{\odot}$ USACE \$/CY has increased by ~78%

 $_{\odot}$ Industry \$/CY has increased by ~150%

 $_{\odot}$ Overall \$/CY has increased by ~155%

Overall US dredging volumes by type have decreased:

New Work CY has decreased by ~673%

Maintenance CY has decreased by ~21%

 Overall US maintenance dredging responsibility has shifted to Industry:

 $_{\odot}$ USACE portion has decreased by ~17%

 $_{\odot}$ Industry portion has increased by ~43%

Water Injection Dredge (WID)

North Carolina State Ports Authority (NCSPA)

> NORTH CAROLINA PORTS

FSS

Request for Proposals (RFP), Selection, & Delivery

- Design-Build RFP
 - Issue RFP to all Potential Teams
 - Technical Proposals & Sealed Price
 Proposals Due
 - Technical Presentation by Teams
- Selection & Delivery
 - NCSPA Board of Directors Meeting
 - Recommend Selection
 - Final Selection
 - Contract Execution

USACE-ERDC Monitoring Event

FX

- Since June 2021
 - Dredged ~270,000 cubic yards (CY)
 - Approximately 90 hours
 - Production rate of around 3,000 CY/hr.
- NCSPA costs include:
 - Annual depreciation of the vessel
 - Annual insurance costs
 - Dredging operations costs
 - Fuel
 - Other O&M costs (repairs, parts, contract services, expendables, training not related to a dredging event, etc.)
 - Pre- & post-dredging surveying
- Estimated \$1M/YR in cost savings

Vessel	
Length Overall (ft)	88
Beam Overall (ft)	28.75
Draft (ft)	3
Max Dredging Depth (ft)	55
Sailing Speed (kts)	6
Dredge System	
Dredging Speed (kts)	1.5
WID Manifold Width (ft)	27.5
Nozzles (Number)	41
Nozzle Diameter I.D (in)	2
Max Rated Pump Pressure (PSI)	35
Max Rated Flow Rate (gal/min)	20,000
Production – January 20	22
Volume Dredged (cu yd)	70,990
Dredging Time (Hrs)	29
Production Rate (cu yd/hr)	2,448
Production – Oct/Nov 20	21
Volume Dredged (cu yd)	113,646
Dredging Time (Hrs)	32.5
Production Rate (cu yd/hr)	3,497

Osprey with jet bar deployed

Osprey with jet bar above water

Pre-Dredging & Post-Dredging Survey Results

Vicinity of Surveyed Area Before Dredging Survey

After Dredging Survey

MIN. ELEVATION (ft)	MAX. ELEVATION (ft)	COLOR
-50.0	-46.0	
-46.0	-45.0	
-45.0	-44.0	
-44.0	-43.0	
-43.0	-42.0	
-42.0	-41.0	
-41.0	-40.0	
-40.0	-39.0	
-39.0	-37.0	
-37.0	-35.0	
-35.0	-33.0	
-33.0	-29.0	
-29.0	-22.0	
-22.0	-15.0	
-15.0	-5.0	
-5.0	-3.0	

WID Channel Dredging above the Chesapeake Bay Bridge-Tunnel

Virginia Port Authority (VPA)

Chesapeake Bay's Federal Waterways

USACE District:

Norfolk - NAO

USACE Channel:

Channel ID:

Survey Date Range:

Predefined Custom Date Range

All Surveys

FX

Chesapeake Bay Bridge-Tunnel

USAC All	CE Cha	nnel:				
Chan All	nel ID:	51				
Surve	y Date	Rang	ge:			
Prede	efined	Cus	tom D)ate R	ange	
From						
From	5/8/202	22	C) h:m	m A	
From	5/8/202	22	C) h:m	m A	
From	5/8/202 5/9/202	22	0) h:m	m A	
From Until	5/8/202 5/9/202 <	22 22 Mi	Q ay 202) h:m) h:m 22	m A m A	>>>
From Until	5/8/202 5/9/202 < Mo	22 22 Ma Tu	Q Q ay 202 We) h:m) h:m 22 Th	m A m A Fr	» Sa

Use any combination to drill down to

FX

VPA FINAL SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT (SEA)

- Norfolk Harbor Navigation Improvements Project, Chesapeake Bay Bridge-Tunnel (CBBT)
- Preconstruction engineering & design efforts raised concerns about risks to the tunnel structure
- WID \ID the chosen alternative dredging method
- US Army Corps of Engineers Norfolk District (USACE-NOA) was responsible for preparing the SEA
- Non-federal sponsor (VPA) providing input on the technical aspects of the proposed project

F)

Water Injection Dredge (WID) in Reservoirs

Kansas Water Office (KWO)

Tuttle Creek Lake

WID Kansas Water Office (KWO) Tuttle Creek Lake

FX

WID KWO – Tuttle Creek Lake (Cont.)

WID KWO – Tuttle Creek Lake (Cont.)

Tuttle Creek Lake: 2010

WID KWO – Tuttle Creek Lake (Cont.)

Annual Storage Volume Lost

- Sedimentation Rate in the Reservoir's Multi-Purpose Pool (1957 – 2010)
 - 3,600 acre-feet/year
 - 5.8 million cubic yards per year

Open the sluice gates & release the sediment through the existing low elevation discharge conduit under the forces of:

- Gravity due to elevation changes
- Current (suction) from the low elevation discharge conduit

Water Injection Dredging

Inject water into the sediment deposits to induce a *density current*

WID KWO – Tuttle Creek Lake (Cont.)

FX

Summary – Case Studies, Scopes, & Conversations

- North Carolina State Ports Authority
- Port Tampa Bay
- Kansas Water Office
- New York City DEP
- Virginial Port Authority
- Port of Morgan City

- Georgia Ports Authority
- Kinder Morgan LNG, Savannah
- South Carolina Ports Authority
- Maryland Port Administration
- Alabama State Port Authority
- USACE Mobile & Wilmington Districts

FX
Summary - Takeaways

The key benefit of WID is that horizontal *transport* of the dredged material takes place *entirely within the water column*

Worldwide WID is a *rapidly evolving field* & will require educating regulatory agencies & the public

Traditional dredging is often as much about transporting & handling water as it is about the removed sediment

Four-part formula for WID success:

- Site conditions (sediment & hydrodynamic forces)
- Technical feasibility
- Legal & regulatory concerns
- Economics (benefits/costs ratio vs cost only)

The *WID technique* dilutes & fluidizes the sediments, creating a *near-bottom density current* with higher density than the surrounding water Joe Wagner, PE, D.NE, BCEE Senior Dredging Engineer Ports & Harbors

76 S. Laura Street, Suite 1600 Jacksonville, FL 32202 904.210.4078 joe.wagner@hdrinc.com

hdrinc.com © 2021 HDR, all rights reserved.

FJS

Water Injection Dredge (WID)

Alabama State Port Authority (ASPA)

ASPA Waterways

USACE District:				
USACE Channel:		SAM		REAL CO
Channel ID: All		E COMPANY		
Survey Date Range:				
Predefined Custom Date Range				
All Surveys				
Last 60 days	A States			
2019	and the second			
2018				
Reset				
ISACE Hydrographic Surveys – eHydro	10		世紀國聖	S/M 6
vww.navigation.usace.army.mil/Survey/Hydi				
				40

Mobile Bay Regional Sediment Management (RSM) Strategy

- Mobile Bay Ship Channel was primarily the 45-feet-deep & 400-feet-wide extending northward from the mouth of Mobile Bay for 29 miles to the mouth of the Mobile River
- About 4 MCY per year annual maintenance dredged material is removed by hopper dredges from Mobile Bay Ship Channel & placed in the ODMDS
- ODMDS is roughly 4 miles from the inlet & over 4.75 square miles, but ~40 miles from the north end of Mobile Bay
- Requirement to use hopper dredges for Mobile Bay dredging limited by USACE-SAM access to a smaller percentage of the available hopper dredging fleet

Mobile Harbor Construction, Engineering & Design Agreement

- Six-phase project anticipated completion by late 2024 or early 2025. Total estimated cost for the project is \$365.7 M
- Project will deepen the bar, bay & river channels in Mobile Harbor to 50 feet
 - Bend easing at the double bends of the bar channel
 - Widening of the bay channel from 400 feet to 500 feet from the mouth of Mobile Bay northward for three miles
 - Expanding the Choctaw Pass Turning Basin by 250 feet to the south at a 50-foot depth.
- In April 2021, Great Lakes Dredge & Dock (GLDD) awarded a ~\$54 M contract to deepen & widen portions of the Mobile Harbor with an estimated completion date of October 18, 2022

Mobile Harbor Deepening Project

MOBILE HARBOR APPROVED PLAN

FJS

- Channel Deepening: 50 feet Bay/ 52 feet Bar
- Channel Widening: 3 mi. long, 100 ft wide' (2)
- Turning Basin Modification ()
- Bar Channel Bend Easing ()

FULLY FUNDED COSTS: \$365.7M

*Federal Share:	\$274.3M
*Non-Federal Share:	\$91.4M

CONSTRUCTION PHASING				
Phase 1	Bar Channel Deepening			
Phase 2	Bar Channel & Bend Easings to 52' plus Widener			
Phase 3	Deepening Lower Bay Channel			
Phase 4	Deepening remainder of Lower Bay Channel and portion of Upper Bay Channel			
Phase 5	Deepen Upper Bay Channel (Relic Shell)			
Phase 6	Turning Basin			

Mobile Harbor Deepening Project

Dredging Efficiencies Investigation

Port Tampa Bay (PTB)

Tampa Bay's Federal Waterways

All			5
USACE CH	annel:		
All			
Channel II	D:		
All			~
Survey Da	te Range:		
All Surveys	Last 60 days	2019	2018
Custom Date	e Range		

USACE Hydrographic Surveys – eHydro www.navigation.usace.army.mil/Survey/Hydro

46

FX

Tampa Harbor

Dredged Material Management Plan (DMMP)

- More than 67 miles of channels with various depths & widths & six turning basins
- Roughly 1 MCY of maintenance dredging per year
- Approximately 7.5 MCY of capacity is available
- The USACE DMMP calls for:
 - Continual raising of existing Dredged Material Containment Facility Dikes
 - More disposal in Ocean Dredged Material Disposal Site (ODMDS)
 - Beneficial Reuse of dredge material
 - Reducing dredging needs

Discussion Summary & Feasibility Study Outline

- \$3 M maintenance dredging annual budget
 - Includes PTB's federal responsibilities
 - Does not include any new infrastructure
- Feasibility study outline evaluation:
 - Current dredging methods efficiency
 - Review & summarize existing studies documenting the dominant circulation features
 - Potential effectiveness of WID
 - Possibility of using in-channel sumps & wideners to "collect" material re-fluidized by the WID

FJS

Water Injection Dredge (WID)

Georgia Ports Authority (GPA)

Savannah Harbor Expansion Project (SHEP)

GPA Waterways – Savannah Harbor

USACE District:	STALLES AND THE PART OF A PART AND A PART OF A PART AND A PART OF A PART AND A PART AND A PART AND A PART AND A
Savannah - SAS	
USACE Channel:	
All	
Channel ID:	
All	
Survey Date Range:	
Predefined Custom Date Range	
All Surveys	
Last 60 days	
Lest of days	
2019	
2018	
Reset	
SACE Hydrographic Surveys – eHydro /ww.navigation.usace.army.mil/Survey/Hydr	

FSS

Savannah Harbor (West)

53

FSS

Savannah Harbor (East)

54

Savannah Harbor Expansion Project (SHEP) General Reevaluation Report (GRR)

- Savannah Harbor Bar Channel is 11.5 miles long, 44 feet deep & 600 feet wide, & an Inner Harbor Channel 21 miles long, 42 feet deep & 500 feet wide
- Ongoing deepening will result in 47 feet depths
- Up to 7 MCY of sediments (sand, silt & clay) removed each year from the Inner Harbor into ~8 DMCA
- Up to 800 KCY of sediment from the Entrance Channel from December through March

GPA Waterways – Brunswick Harbor

Brunswick Harbor

Brunswick Harbor

FX

Brunswick Harbor Modification Study Draft FONSI

- Brunswick Harbor Bar Channel is 38 feet deep, 500 feet wide, & 10.7 miles long & an Inner Harbor Channel 36 feet deep, 400 feet wide, & 15.3 miles long through St. Simon's Sound, Brunswick River & East River
- Inner Harbor has two turning basins East River & Turtle River
- Inner Harbor dredged material placed in Andrews Island, the sole upland DMCA
- Brunswick Harbor has not been dredged to authorized project dimensions since 2010 due to funding shortfalls, a limited number of hopper dredges, & environmental hopper dredging windows

Water Injection Dredge (WID)

South Carolina Ports Authority (SCPA)

SCPA Waterways

USACE District: All **USACE Channel:** All Channel ID: All Survey Date Range: All Surveys Last 60 days 2019 2018 Custom Date Range USACE Hydrographic Surveys – eHydro www.navigation.usace.army.mil/Survey/Hydro

Cooper River & HLT

line

arth

FSS

Charleston Harbor Regional Sediment Management (RSM) Update

- More than 39 miles of channels with various depths & widths & six turning basins.
- Roughly 6.9 MCY of maintenance dredging per year
- ODMDS is roughly 8 miles from the inlet & over 12 square miles, with a smaller drop zone
- USACE Charleston District is currently dredging parts of the Harbor to 52 feet & entrance channel to 54 feet

Project Focus

- Charleston Harbor is formed by the junction of the Ashley, Wando, & Cooper Rivers
- In 1942, Santee-Cooper Hydroelectric Project was completed, & was flow into the west branch of the Cooper River
- In 1959 three (3) *contraction dikes* were constructed in the Cooper River
- As long ago as 1992, the USACE has acknowledged the need to reconfigure the *contraction dikes*
- HDR's proposed study would, among other issues like the *contraction dikes*, look at the potential effectiveness of WID in the Charleston Harbor

Water Injection Dredge (WID)

Maryland Port Administration (MPA)

MPA Waterways (Northern)

USACE District:

All				V
USACE CH	annel:			
All				÷
Channe <mark>l</mark> II	D:			
All				ş
Surve <mark>y</mark> Da	te Range:			
All Surveys	Last 60 days	2019	2018	
Custom Date	e Range			

USACE Hydrographic Surveys – eHydro www.navigation.usace.army.mil/Survey/Hydro

MPA Waterways (Central)

AB				
All				X
USACE CH	annel:			
All				V
Channel II	D:			
All				Ŷ
Survey Da	te Range:			
All Surveys	Last 60 days	2019	2018	
Custom Date	e Range			

www.navigation.usace.army.mil/Survey/Hydro

67

MPA Waterways (Southern)

USACE Di	strict:			
All				\forall
USACE C	nannel:			
All				$\overline{\nabla}$
Channel II	D:			
All				∇
Survey Da	te Range:			
All Surveys	Last 60 days	2019	2018	
Custom Date	e Range	20 - 2		

USACE Hydrographic Surveys – eHydro www.navigation.usace.army.mil/Survey/Hydro

68

Port of Baltimore

MDOT MPA DMMP 2020

- A series of vast & complex channels with various depths & widths & multiple turning basins
- Roughly 5 MCY of maintenance dredging per year
- Mid-Bay Island Ecosystem Restoration Project's beneficial use of dredged material is the Port's number one federal priority
- What is the Future of Confined Aquatic Disposal?
- What are the most daunting & potentially long-lasting programmatic challenges?
- What are the crucial budget concerns?

MDOT MPA DMMP 2020 www.maryland-dmmp.com

Water Injection Dredge (WID) in Reservoirs

Kansas Water Office (KWO)

Tuttle Creek Lake

WID Kansas Water Office (KWO) Tuttle Creek Lake

FSS

WID KWO – Tuttle Creek Lake (Cont.)

WID KWO – Tuttle Creek Lake (Cont.)

Tuttle Creek Lake: 2010

WID KWO – Tuttle Creek Lake (Cont.)

Annual Storage Volume Lost

- Sedimentation Rate in the Reservoir's Multi-Purpose Pool (1957 – 2010)
 - 3,600 acre-feet/year
 - 5.8 million cubic yards per year

Open the sluice gates & release the sediment through the existing low elevation discharge conduit under the forces of:

- Gravity due to elevation changes
- Current (suction) from the low elevation discharge conduit

Water Injection Dredging

Inject water into the sediment deposits to induce a *density current*

WID KWO – Tuttle Creek Lake (Cont.)

FX

USACE NDC Dredging Costs (1963-2020) https://publibrary.planusace.us/#/series/Dredging%20Information

	CORPS OF ENGINEERS											
	DOLLARS			C	UBIC YARD	S	<u>2020 \$\$/CY</u>					
	MAINT	NEW WORK	TOTAL	MAINT	NEW WORK	TO TAL	MAINT	NEW WORK	WEIGHTED AVG.			
First Ten Years	\$37	\$6	\$44	131	17	149	\$2.16	\$2.79	\$2.24			
Last Ten Years	\$157	\$0.01	\$157	39	0.002	39	\$3.98	\$3.78	\$3.98			
				333%	966667%	377%	184%	135%	178%			

	INDUSTRY										
	DOLLARS			CUBIC YARDS			<u>2020 \$\$/CY</u>				
	MAINT	NEW WORK	TOTAL	MAINT	NEW WORK	TO TAL	MAINT	NEW WORK	WEIGHTED AVG.		
First Ten Years	\$37	\$53	\$90	118	110	228	\$2.36	\$3.68	\$3.00		
Last Ten Years	\$1,028	\$339	\$1,367	166	16	182	\$6.20	\$20.55	\$7.49		
				140%	667 %	125%	262%	558%	250%		

	USACE & INDUSTRY										
	DOLLARS			C	UBIC YARD	S	<u>2020 \$\$/CY</u>				
	MAINT	NEW	τοται	MAINT NEW TOTAL MAINT	MAINT	NEW	WEIGHTED				
	IVI/ALIN I	WORK	TOTAL		WORK	IUIAL	MAINT	WORK	AVG.		
First Ten Years	\$74	\$60	\$134	249	127	377	\$2.26	\$3.56	\$2.70		
Last Ten Years	\$1,185	\$339	\$1,524	205	16	222	\$5.77	\$20.55	\$6.87		
				121%	773 %	170%	256%	578%	255%		

USACE NDC Dredging Costs (1963-2020)

- Overall US dredging volumes have decreased
- New work dredging volumes have dramatically decreased
- Maintenance dredging volumes have slightly decreased
- Overall US dredging costs have significantly increased
- Overall US maintenance dredging responsibility (both volume & dollars) has shifted to Industry

USACE NDC Dredging Costs (1963-2020)

- Overall US dredging volumes decreased

 USACE CY has decreased by ~377%
 Industry CY has decreased by ~125%
 Overall CY has decreased by ~170%
- Overall US dredging costs increased

 USACE \$/CY has increased by ~178%
 Industry \$/CY has increased by ~250%
 Overall \$/CY has increased by ~255%
- Overall US dredging volumes by type have decreased

 \circ New Work CY has decreased by ~773%

Maintenance CY has decreased by ~121%

 Overall US maintenance dredging responsibility has shifted to Industry

USACE portion has decreased by ~17%

 $_{\odot}$ Industry portion has increased by ~43%

FJS

USACE NDC Dredging Costs (1963-2020) https://publibrary.planusace.us/#/series/Dredging%20Information

	CORPS OF ENGINEERS											
	DOLLARS			C	UBIC YARD	S	<u>2020 \$\$/CY</u>					
	MAINT	NEW WORK	TOTAL	MAINT	NEW WORK	TO TAL	MAINT	NEW WORK	WEIGHTED AVG.			
First Ten Years	\$37	\$6	\$44	131	17	149	\$2.16	\$2.79	\$2.24			
Last Ten Years	\$157	\$0.01	\$157	39	0.002	39	\$3.98	\$3.78	\$3.98			
				333%	966667%	377%	184%	135%	178%			

	INDUSTRY										
	DOLLARS			CUBIC YARDS			<u>2020 \$\$/CY</u>				
	MAINT	NEW WORK	TOTAL	MAINT	NEW WORK	TO TAL	MAINT	NEW WORK	WEIGHTED AVG.		
First Ten Years	\$37	\$53	\$90	118	110	228	\$2.36	\$3.68	\$3.00		
Last Ten Years	\$1,028	\$339	\$1,367	166	16	182	\$6.20	\$20.55	\$7.49		
				140%	667 %	125%	262%	558%	250%		

	USACE & INDUSTRY										
	DOLLARS			C	UBIC YARD	S	<u>2020 \$\$/CY</u>				
	MAINT NEW	ΤΟΤΑΙ	MAINT	NEW	NEW TO TAL	MAINT	NEW	WEIGHTED			
	IVI/ALIN I	WORK	TOTAL		WORK	IUTAL	MAINT	WORK	AVG.		
First Ten Years	\$74	\$60	\$134	249	127	377	\$2.26	\$3.56	\$2.70		
Last Ten Years	\$1,185	\$339	\$1,524	205	16	222	\$5.77	\$20.55	\$6.87		
				121%	773 %	170%	256%	578 %	255%		

Project Approach

- NCSPA authorized research into acquiring a WID, hiring a WID contractor, or some other variant (Spring 2018)
- Contacted over 70 organizations, including dredge manufacturers & other possible sources of relevant information)
 - **O** Dredging related electronic newsletters
 - Trade publications
 - **•** Trade show membership & attendance
 - OAnnual dredging related directories
 - Hydraulic agitation dredge operators
- Interview roughly 20 organizations, with 11 of them becoming promising candidates for WID design-build teams (Fall 2018)

The Jones Act

"Section 1 of the Act of May 24, 1906 (34 Stat. 204; 46 U.S.C. App. 292), provides that, "a foreign-built dredge shall not, under penalty of forfeiture, engage in dredging in the United States unless documented as a vessel of the United States."

Procurement Fact Sheet

- Solicited feedback from dredge manufacturers & others regarding several crucial project factors:
 - Preliminary schedule
 - Time needed to fabricate & transport the dredge to the NCSPA
- Factors similar to any NCSPA purchase of large, expensive equipment
 - Maintenance
 - Warranties
 - Operation manuals
- Unique factors included:
 - Proof of concept demonstrations
 - Training requirement

Request for Pre-Qualifications

Project sequence:

- Commissioning of a fully equipped WID
- Delivery of WID to the NCSPA Ports of Wilmington & Morehead City
 - Execution of a Port operator's training program
 - Full week demonstration at each Port
- Report summarizing the Contractor's executed proof of concept, including pre- & post- dredge hydrographic survey data
- Modification of the WID plant, as necessary, & handover to NCSPA

Request for Information & Geotechnical Data Collection

- Sediment characterization fieldwork at both ports
- Ponar grab & cone penetrometer test (CPT)
- Several unique sediment parameters
 - CPT Testing
 - Tip resistance
 - Sleeve resistance
 - Pore water pressure
 - Measuring ability to fluidizes
 - Post-decant solids mass loss
 - Slurry mass loss
 - Slurry volume loss

