

Manistee Sediment Remediation

WEDA Dredging Summit and Expo

July 25-28, 2022 | Houston, Texas

Presentation Overview

- Site Background
- Design Approach
- Remedy Implementation
- Lessons Learned

Site Background

Site uses

- MGP
- Post-MGP

Site remedial history

Investigations

1895

Upland interim remedies

1908

MGP Operation 1882 to 1945

1922

1921

Areas of concern

Conceptual Site Model

Geology

- Sand to ~ 38 ft bgs with K ~10⁻² to 10⁻³ cm/sec
- Clay

Hydrogeology

- Flow to Manistee River
- Depth 16 to 20 ft bgs

Impacts

- Dissolved phase BTEX and PAHs > criteria
- LNAPL and DNAPL present

ISS Design Goals

Mix

- 2.5% Portland cement
- 4.5% blast furnace slag

Permeability

- <10⁻⁶ cm/sec
- Alternative is two orders of magnitude less permeable than surrounding aquifer

Compressive Strength

 >50 psi minimum unconfined compressive strength @ 28 days

QA/QC

• One sample per 500cy

Design Considerations

- High traffic (commercial and recreational) with limited space outside navigation channel
- Critical infrastructure including highway bridge, rail bridge, and private docks
- Critical utilities including bridge cables and outfalls
- Permit requirements no backfill in navigation channel
- Protection of in-river ISS/incorporation in bank restoration
- Dredging would potentially produce sheen

Design Approach – General

- Offsets from critical infrastructure
- Diver-assisted hydraulic dredge near bridge cables
- Flexible approach to allow ship traffic on short notice
 - Moon pool and excavator for most removal
 - Fixed turbidity controls near shoreline and structures
 - Air bubble curtain for secondary containment
- Sheen patrol crew

Design Approach – Remedial Areas

0	
Exp	
nit and	Brid
Sumn	
Iging	Stru
Drec	• Op

Area	Max. Removal Depth (ft)
А	12
В	5
Bridge Cables	0.5
С	1

Structural Considerations

- Optical monitoring on railroad bridge
- Dredging offsets from outfall, rail bridge, riprap shoreline, docks, other utilities/structures

In-River ISS

ARCADIS

Approach

- Cofferdam
- Platform construction
- Auger mixing

Challenges

- Depth of mixing
- Utilities: 60" storm, 36" outfall
- Active railroad, navigational channel must remain open
- Native American artifacts
- Obstruction removal
- Schedule and sequencing

 $\overline{\Box}$

Cofferdam and Platform Construction

Sediment and Water Handling

Sediment Handling

- Transfer station on shoreline
- Lined dewatering pad
- Gravity dewatering plus stabilizing agent (as needed)
- Geotube for hydraulic dredging
- Offsite landfill disposal

Water Treatment

- Onsite treatment
- Initial discharge to groundwater via trench
- NPDES discharge to river

Confirmation Approach

Area	Observation Frequency
А	1/DMU
В	1/2,000 sf + 1/deeper DMU
С	1/2,000 sf

NAPL Presence	Response Action
Observed	Additional dredging
Not Observed	Dredging complete

Areas A and B

Restored Bank Challenges

- No fill requirement in navigation channel •
 - Redesign of restored bank to keep toe out of channel
- **ISS** swell
 - Excavation to extent practicable
 - Rock wheel grinding to final grade
 - Further adjustments to restored bank —
 - Flexible approach to allow ship traffic on short notice

In River ISS Swell Removal

Other Field Challenges

- Traffic coordination
- Debris in diver-assisted dredge area
- Consideration of confining layer in confirmation sample collection
- Community relations

Lessons Learned – Communications

Successful team management of changed conditions Close communications with commercial and recreational vessel allowed effective traffic planning

Owner, Engineer, and Contractor all focused on end goal/best outcome

Communications

Upfront focus on community relations and frequent contact with commercial shippers, other boaters, and property owners contributed to project success

Lessons Learned – ISS

Lessons Learned – Dredging

Offsets and diver-assisted dredging optimized sediment removal near structures

Multiple combined water quality controls were effective and allowed flexibility/mobility Restoration approach balanced navigation channel, bank stability, post-dredging observation, and ISS remediation area requirements with regulatory restrictions

Technical

Contact Us

Greg Zellmer, PG Arcadis Project Manager gregory.zellmer@arcadis.com

Mike Erickson, PE Arcadis Engineer of Record michael.erickson@arcadis.com

Eric Dievendorf, PE Arcadis Design Lead eric.dievendorf@arcadis.com Nancy Gensky, PG Arcadis Principal Geologist

nancy.gensky@arcadis.com

Matt Williams, PE Arcadis Upland Lead

matthew.williams@arcadis.com

Mandy Giampaolo, PE Arcadis Engineer of Record and ISS Lead

mandy.giampaolo@arcadis.com

Arcadis. Improving quality of life.