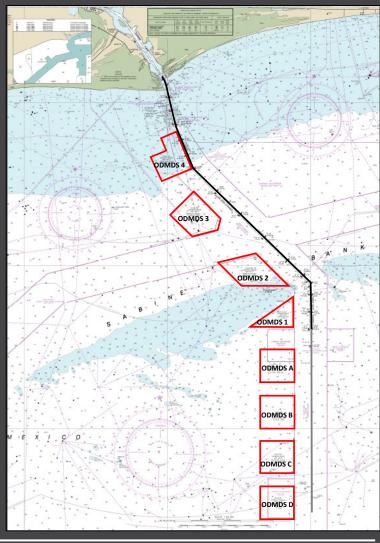


Sabine-Neches Waterway

Regulatory Compliance Modeling for Dredge Material Placement in a Ship Channel with Eight Ocean Placement Areas

S.E. Bailey, C.R. Montgomery, M. Bourne and B.N. Stevens

WEDA, Houston, TX 2022



Sabine-Neches Waterway ODMDS Locations

MPRSA 103 Evaluation of New Work Dredge Materials Bound For Ocean Placement

- Evaluate elutriate chemistry and toxicity
 - ► COCs > WQC?
 - ► Toxicity?
- Determine Limiting Permissible Concentration (LPC)
- Evaluate initial mixing for each ODMDS STFATE model
 - ▶ Is the concentration < LPC outside the ODMDS boundary?
 - ▶ Is the concentration < LPC after 4 hours?
- Determine restrictions necessary to ensure compliance?
 - ► Load restrictions
 - ▶ Disposal zone

Elutriate Preparation

Analytical Results Elutriate Chemistry and Toxicity

4 Sediment Samples

SNWWNew-01, SNWWNew 02, SNWWNew-03, SNWWNew-04

Prepare Elutriate (Standard Elutriate Test)

Elutriate Chemical Analyses

- No COCs detected at concentrations above the marine water screening criteria (TWSQS acute and EPA WQC CMC)
- Toxaphene was non-detect;
 DL < criteria; RL > criteria
- No WQC exceedances => no dilution/mixing required for chemical analytes

Elutriate Bioassays

- Some toxicity shown in 3 samples
- Ammonia likely cause of toxicity for some samples

Elutriate Bioassays

Bioassay Results Elutriate Toxicity

CONFOUNDING FACTORS

Liutilate Toxicity Combine Professional						
Elutriate Sample	Endpoint	96-h Menidia beryllina	48-h Americamysis bahia	96-h Americamysis bahia	Ammonia Toxicity	
SNWWNEW-01-EL	NOEC	100%	100%	100%	No	
NO TOXICITY	LOEC	NA	NA	NA		
	LC50	NA	NA	NA		
SNWWNEW- 02 -EL	NOEC	10%	50%	100%	LIKELY	
NO LC50	LOEC	50%	100%	NA		
	LC50	NA	NA	NA		
SNWWNEW-03-EL	NOEC	50%	100%	100%	No	
NO LC50	LOEC	100%	NA	NA		
	LC50	NA	NA	NA		
SNWWNEW- 04 -EL	NOEC	10%	50%	100%	LIKELY	
	LOEC	50%	100%	NA		
	LC50	82.4%	NA	NA		

New Approach to LPC determination

Part 1: Water Quality

- Determine COCs that exceeded EPA water quality criteria
- Select the COC that requires the most dilution → No WQC exceedances

Part 2: Toxicity Evaluation & Limiting Permissible Concentration

- Toxicity elutriate bioassay tests → used to calculate required dilution
- Regulatory calculation yields a Limiting Permissible Concentration (LPC)
- LPC uses an LC50 (50% survival): LPC = AF x LC50; AF typically 0.01
- **BUT** some of our samples did not yield LC50s → our samples had very low toxicity
- AND some of the toxicity was shown to be caused by ammonia; Alternate AF = 0.05

Q: How do we calculate the dilution without an LC50?

Part 3: Alternate LPC Determination - Negotiated with EPA

- Alternate LPC approach uses the NOEC (No Observed Effects Concentration)
- Rationale: limited toxicity, lack of industrial contaminant exposure for new work material
- Although never done before, ERDC provided a technically defensible case and EPA agreed to the use of the NOEC in the calculations

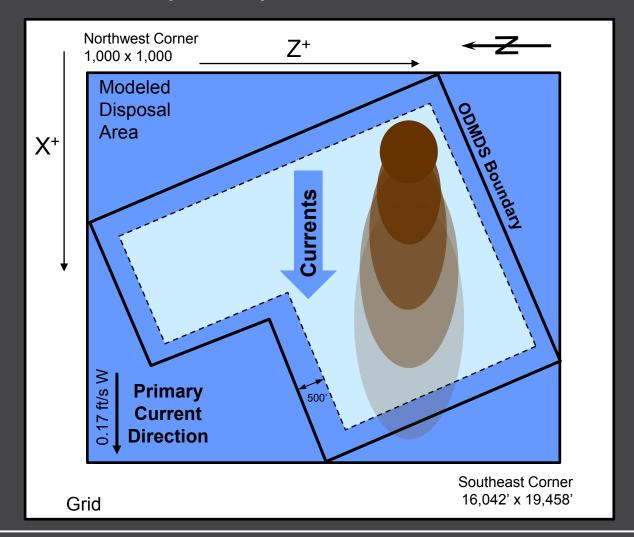
Typical, AF = 1%

If ammonia, AF = 5%

If no LC50, NOEC

		00 h Manidia	48-h	96-h		LPC Calculation		
Sample	Endpoint	96-h Menidia beryllina	Americamysis bahia	Americamysis bahia	Ammonia Toxicity	LC50 x .01	LC50 x .05	NOEC
	NOEC	100%	100%	100%	No NA	NA	NA	NA
SNWWNEW-01-EL	LOEC	NA	NA	NA				
	LC50	NA	NA	NA				
	NOEC	10%	50%	100%	Likely	1% (D=99)	5% (D=19)	
SNWWNEW-02-EL	LOEC	50%	100%	NA				10% (D=9)
	LC50	NA	NA	NA				, ,
	NOEC	50%	100%	100%	No	1% (D=99)	NA	50%
SNWWNEW-03-EL	LOEC	100%	NA	NA				(D=1)
	LC50	NA	NA	NA				
	NOEC	10%	50%	100%	Likely	0.824% (D=120)	4.12% (D=23.3)	
SNWWNEW-04-EL	LOEC	50%	100%	NA				NA
	LC50	82.4%	NA	NA				
US Army Corps of Engineers Engineer Research and Development Center Recommended LP					nended LPC			

103 Compliance Evaluation using STFATE


103 Regulations

- Allowances for mixing/dilution
- WQC must be met within
 - 4 hours of discharge
 - Outside ODMDS boundary (at all times)

STFATE Model

- Models mixing based on local currents and operating conditions
- Used to determine where materials need to be released to comply with dilution requirements

ODMDS 4 Disposal Map for STFATE model

STFATE Modeling Evaluation of Mixing and Dilution

Samples

The 3 samples that displayed toxicity

Ocean Disposal Sites

- 5 ODMDSs: ODMDSs 1-4 and ODMDS D (representing A D)
- Note: for modeling purposes assumed all samples could be placed in all ODMDSs. However, there are restrictions as to which ODMDSs are allowed for specific materials.

Current Velocity & Direction

- Low 0.17 ft/s
- High 1.688 ft/s surface current;
 0.388 ft/s bottom current

Disposal Operation (Load)

- Glenn Edwards (13,500 CY)
- Columbia (4,350 CY)

Volumetric Fraction

- Overflow (with & without)
- Physical characteristics (grain size distribution, Atterberg limit, and percent solids)

Sample	ODMDS	Current Condition	Toxicity Criteria	Load	Volumetric Fraction
SNWWNEW-02	ODMDS 1	Low	LPC = AF x LC50; AF = 0.01	13,500 CY	With overflow
SNWWNEW-03	ODMDS 2	High	LPC = AF x LC50; AF = 0.05	4,350 CY	No overflow
SNWWNEW-04	ODMDS 3		LPC = NOEC		
	ODMDS 4				
	ODMDS D				

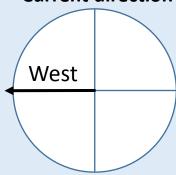
= 252 STFATE Model Runs

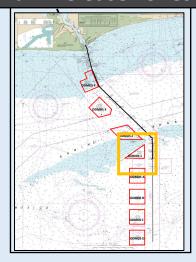
US Army Corps of Engineers • Engineer Research and Development Center

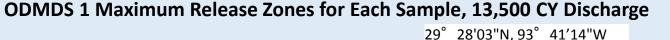
STFATE Results

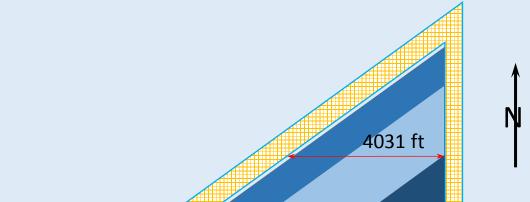
Maximum Longitudinal Distance Required from ODMDS Boundary to Meet Recommended Toxicity LPC Criterion

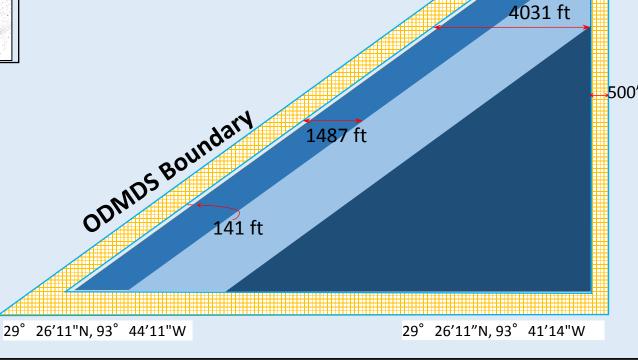
Worst-case results

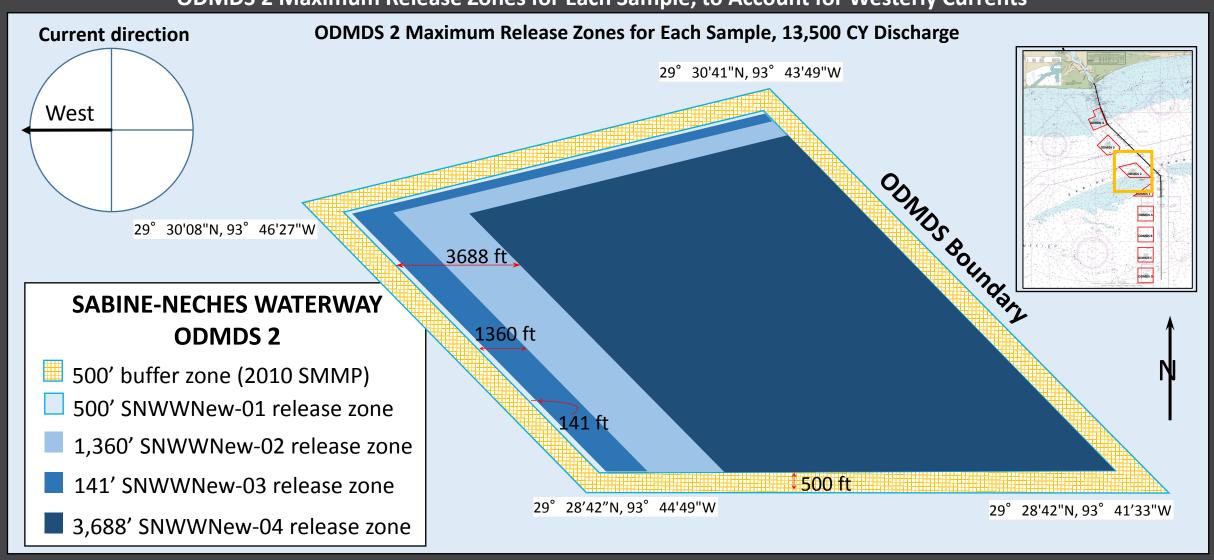

- Maximum distance assuming no overflow
- Lower distances if assume overflow


Longitudinal Distance (ft)


ODMDS	SNWWNew- 01	SNWWNew- 02	SNWWNew- 03	SNWWNew -04
ODMDS 1	NA	1487	141	4031
ODMDS 2	NA	1360	141	3688
ODMDS 3	NA	1118	141	3250
ODMDS 4	NA	1044	141	4826
ODMDS D	NA	707	141	2693

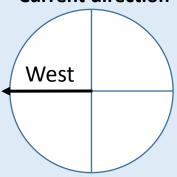

ODMDS 1 Maximum Release Zones for Each Sample, to Account for Westerly Currents

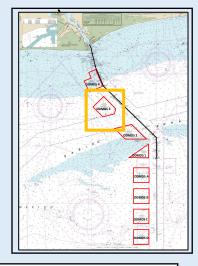




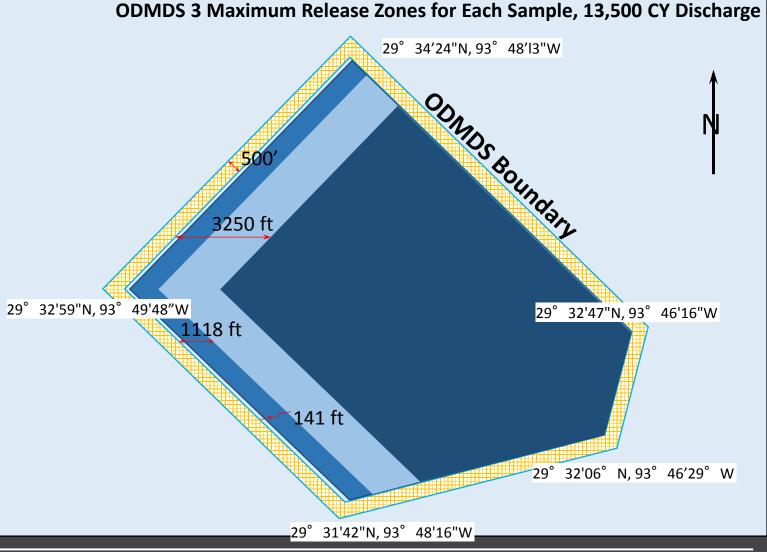
SABINE-NECHES WATERWAY ODMDS 1

- 500' buffer zone (2010 SMMP)
- 500' SNWWNew-01 release zone
- 1,487' SNWWNew-02 release zone
- 141' SNWWNew-03 release zone
- 4,031' SNWWNew-04 release zone

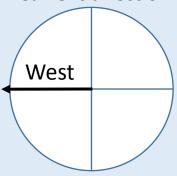


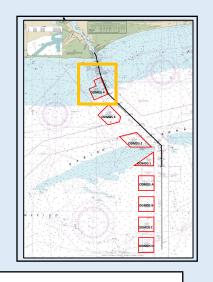

ODMDS 2 Maximum Release Zones for Each Sample, to Account for Westerly Currents

ODMDS 3 Maximum Release Zones for Each Sample, to Account for Westerly Currents



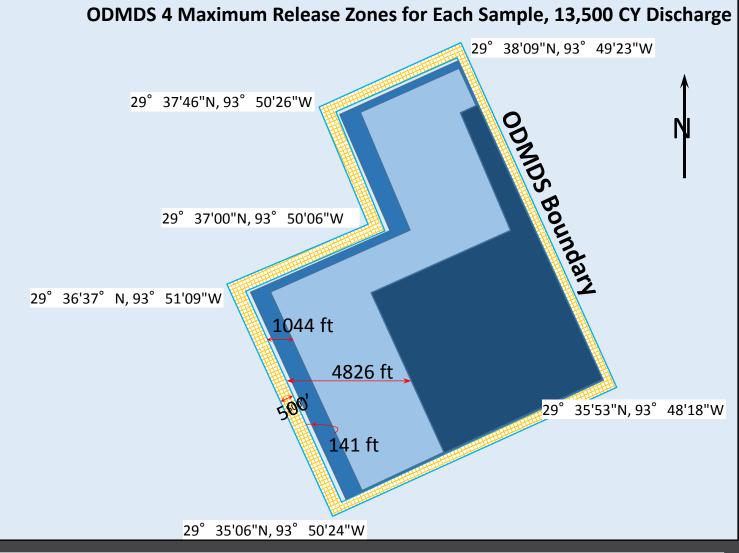
SABINE-NECHES WATERWAY ODMDS 3

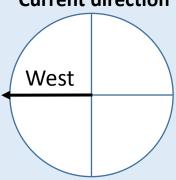

- 500' buffer zone (2010 SMMP)
- 500' SNWWNew-01 release zone
- 1,118' SNWWNew-02 release zone
- 141' SNWWNew-03 release zone
- 3,250' SNWWNew-04 release zone

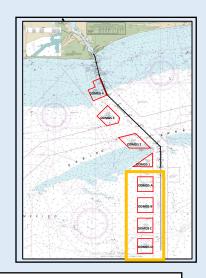


US Army Corps of Engineers • Engineer Research and Development Center

ODMDS 4 Maximum Release Zones for Each Sample, to Account for Westerly Currents

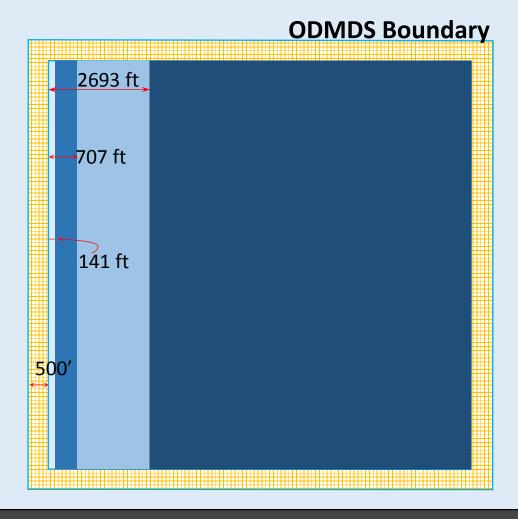

Current direction


SABINE-NECHES WATERWAY ODMDS 4


- 500' buffer zone (2010 SMMP)
- 500' SNWWNew-01 release zone
- 1,044' SNWWNew-02 release zone
- 141' SNWWNew-03 release zone
- 4,826' SNWWNew-04 release zone

ODMDSs A - D Maximum Release Zones for Each Sample, to Account for Westerly Currents

Current direction



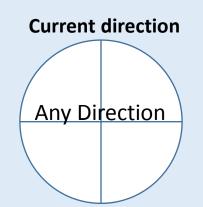
SABINE-NECHES WATERWAY
ODMDSs A - D

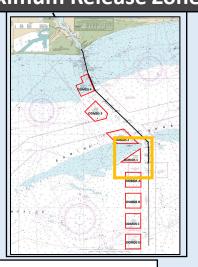
- 500' buffer zone (2010 SMMP)
- 500' SNWWNew-01 release zone
- 707' SNWWNew-02 release zone
- 141' SNWWNew-03 release zone
- 2,693' SNWWNew-04 release zone

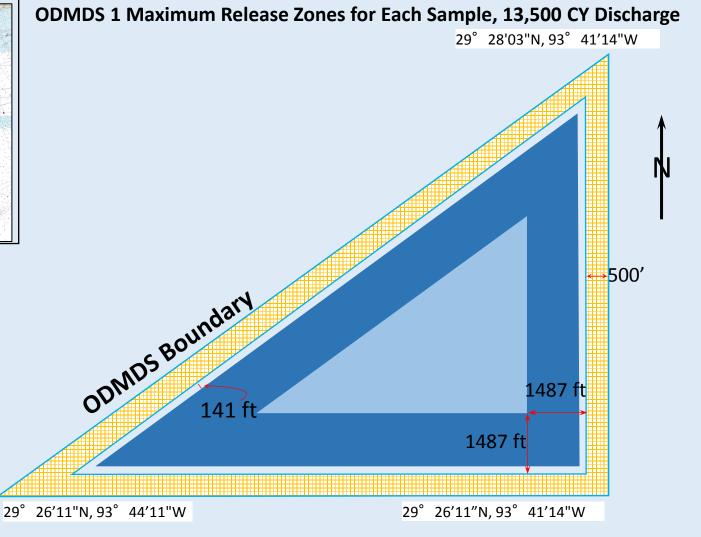
ODMDSs A - D Maximum Release Zones for Each Sample, 13,500 CY Discharge

Predominant Currents

Predominant Current Direction by Month

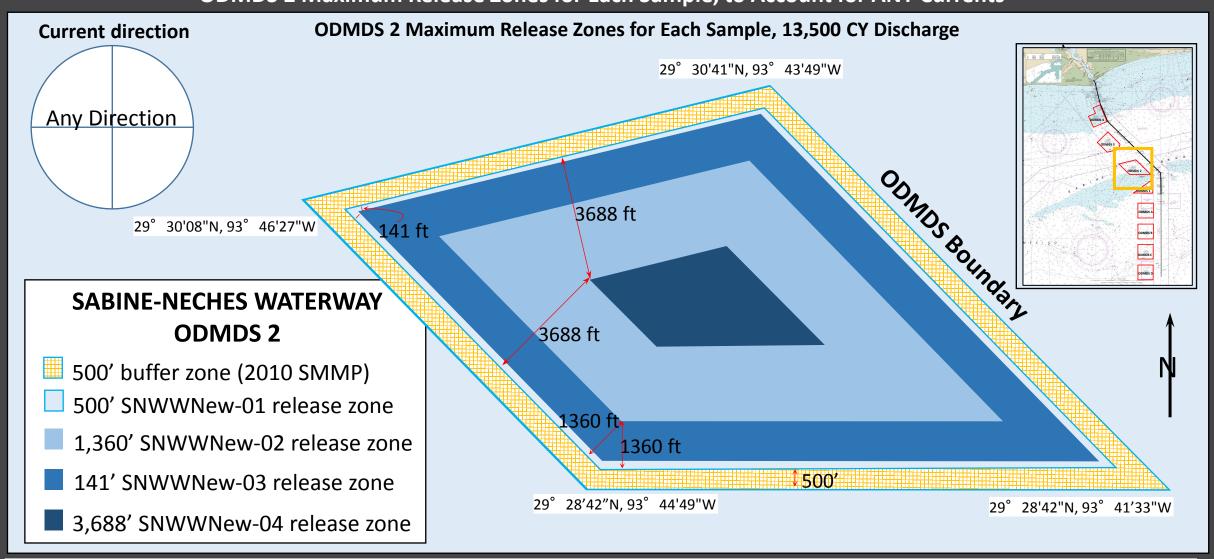

Current Data

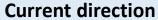

- Data for Buoy Station 42051 TABS Buoy R, 2010 - 2019
- SW to NW 61%
- NE to SE 24%
- Median current magnitude was 0.52 ft/s

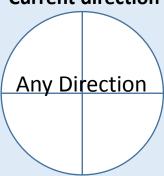

B	D	D
Month	Degrees ¹	Direction
Jan	249	WSW
Feb	254	WSW
Mar	254	WSW
Apr	251	WSW
May	246	WSW
Jun	206	SSW
Jul	102	ESE
Aug	125	SE
Sep	252	WSW
Oct	251	WSW
Nov	257	WSW
Dec	254	WSW

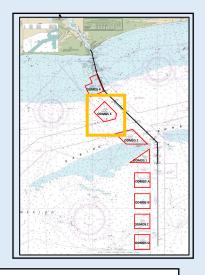
¹The direction the current is flowing toward, 0-360 degrees; 360 is due north

ODMDS 1 Maximum Release Zones for Each Sample, to Account for ANY Currents

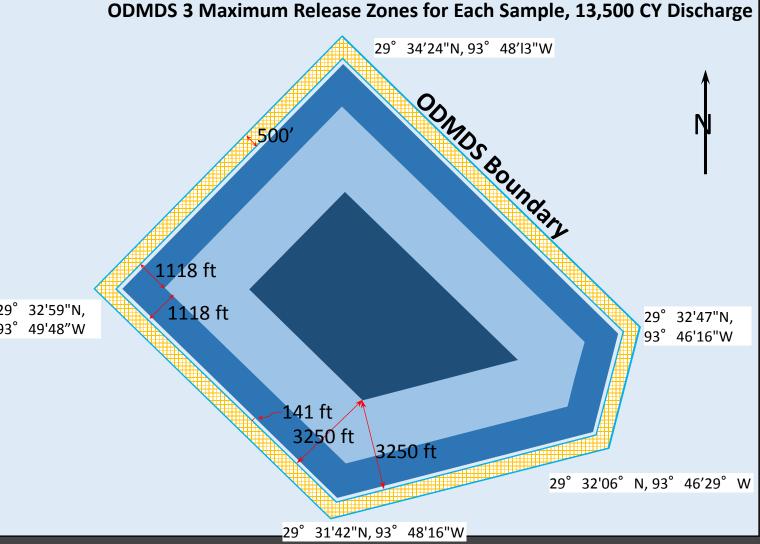



SABINE-NECHES WATERWAY ODMDS 1


- 500' buffer zone (2010 SMMP)
- 500' SNWWNew-01 release zone
- 1,487' SNWWNew-02 release zone
- 141' SNWWNew-03 release zone
- 4,031' SNWWNew-04 release zone (not possible)

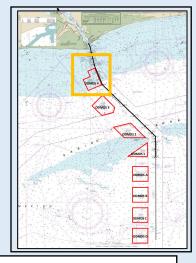

ODMDS 2 Maximum Release Zones for Each Sample, to Account for ANY Currents

ODMDS 3 Maximum Release Zones for Each Sample, to Account for ANY Currents



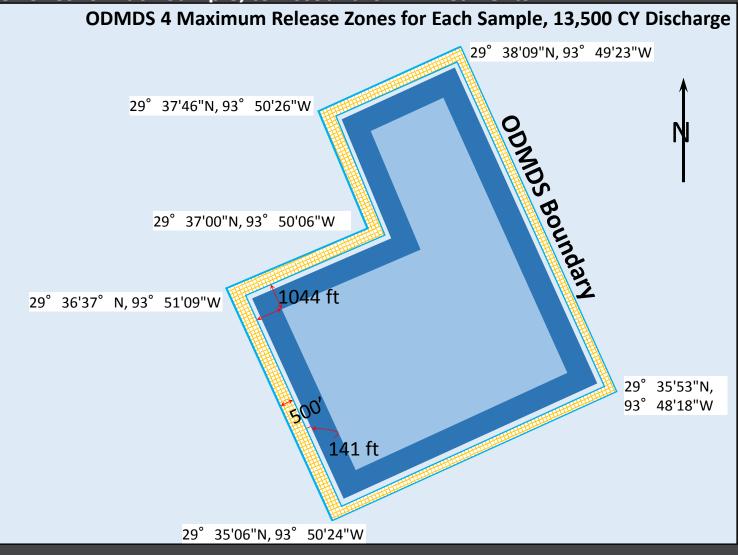
SABINE-NECHES WATERWAY ODMDS 3

- 500' buffer zone (2010 SMMP)
- 500' SNWWNew-01 release zone
- 1,118' SNWWNew-02 release zone
- 141' SNWWNew-03 release zone
- 3,250' SNWWNew-04 release zone

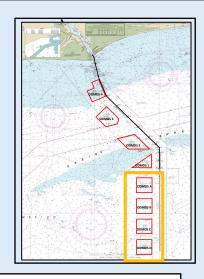


US Army Corps of Engineers • Engineer Research and Development Center

ODMDS 4 Maximum Release Zones for Each Sample, to Account for ANY Currents

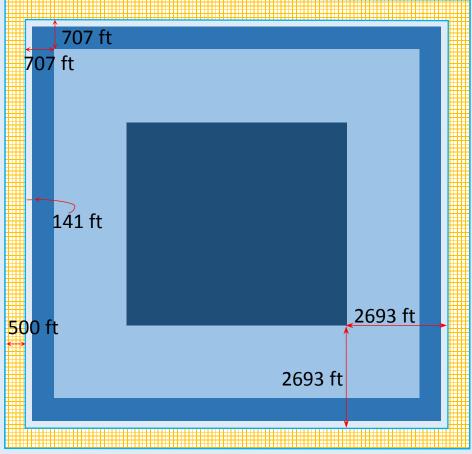

Current direction


SABINE-NECHES WATERWAY ODMDS 4


- 500' buffer zone (2010 SMMP)
- 500' SNWWNew-01 release zone
- 1,044' SNWWNew-02 release zone
- 141' SNWWNew-03 release zone
- 4,826' SNWWNew-04 release zone (not possible)

ODMDSs A - D Maximum Release Zones for Each Sample, to Account for Westerly Currents

Current direction



SABINE-NECHES WATERWAY ODMDSs A - D

- 500' buffer zone (2010 SMMP)
- 500' SNWWNew-01 release zone
- 707' SNWWNew-02 release zone
- 141' SNWWNew-03 release zone
- 2,693' SNWWNew-04 release zone

ODMDSs A - D Maximum Release Zones for Each Sample, 13,500 CY Discharge

Summary

STFATE MODELING WAS PERFORMED TO DETERMINE HOW SNWW DREDGED MATERIALS CAN BE PLACED WITHIN THE 8 ODMDSS TO MAINTAIN REGULATORY COMPLIANCE

- Mixing and dilution needed due to elutriate toxicity
- Approach to determine LPC developed cooperatively with EPA R6
- STFATE modeling demonstrated discharge restrictions
 - Restricted zones for each ODMDS based on sediment regime and seasonal currents
- Results used to develop operational guidance

Acknowledgements

- ERDC Project Team (authors, team leads and their teams):
 Justin Wilkens, John D. Farrar, Al Kennedy, Anthony Bednar,
 Tuan Nguyen and Paul Schroeder
- USACE Galveston District
- Sabine Neches Navigation District
- EPA Region 6 Ocean Dumping Program

QUESTIONS???