U.S. BENEFICIAL USE FRAMEWORK PROVIDES NATURE-BASED SOLUTION AND NATURAL INFRASTRUCTURE OPPORTUNITIES

S.L. Goetz , V.S. Magar , L. Nelis - Ramboll

B. Suedel - ERDC

and L. Sittoni - DEME, formerly Deltares

ACKNOWLEDGEMENTS

Ramboll

Sara Copp-Franz Denver, CO USA Kristin Searcy-Bell Chicago, IL USA Randy Mandel Denver, CO USA

Arcadis

Joren Klooster Amersfoort, Netherlands Leoni Koenders Amersfoort, Netherlands Amersfoort, Netherlands

Lyanne Mendoza

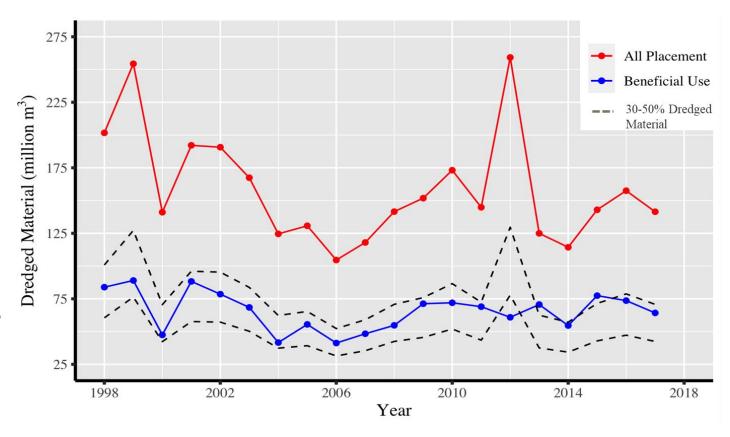
U.S. Army Corps

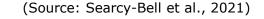
Brandon Boyd Vicksburg, MS USA Don Hayes Vicksburg, MS USA Jeff King Vicksburg, MS USA

Iveth Jaramillo Bogata, Columbia

OUTLINE

- Introductory Information
- Objectives
- Beneficial Use Framework Overview
- 1 Implications for Nature-based Solutions and Natural Infrastructure
- Summary


TERMS


- Beneficial Use (BU) Use of dredged sediment to achieve additional benefits beyond the purposes related to its removal, including other economic, environmental, or social benefits (Searcy-Bell et al., 2021)
- Nature-based Solutions (NbS) A broad term for approaches to conserve, restore and engineer natural systems for the benefit of people and ecosystems we inhabit (Bridges, King, and Simm, 2021)
- Natural Infrastructure (NI) Vegetation, soils, floodplains (i.e., landforms), and wetlands that store precipitation and runoff (Haring et al., 2021)
- Engineering With Nature® (EWN) U.S. Army Corps of Engineers collaborative effort to sustainably deliver economic, social, and environmental benefits associated with water resources infrastructure (USACE, 2021)
- **Risk Assessment** Quantitative estimate of how much of a chemical is present in an environmental medium, how much exposure a receptor has with an impacted medium, and the toxicity of the chemical (USEPA, 2021)

U.S. FRAMEWORK HIGHLIGHTS

- No federal law mandating Beneficial Use
- Beneficial use of dredged material has grown out of advocacy
- Most beneficially used dredged sediment is "clean"
 - "Clean" sediment is not managed under hazardous waste regulations

BU OPPORTUNITIES FOR NbS AND NI

Nature-based Solutions

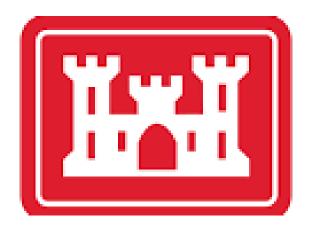
- Flood-risk mitigation
- Coastal resiliency
- Ecosystem restoration

Natural Infrastructure

- Create landforms and hydrology for water quality treatment
- Create landforms and hydrology to reduce dredge frequency
- Create landforms and hydrology for erosion or flood mitigation

OBJECTIVES

- Review how to apply U.S. EPA's guidance for the BU of industrial byproducts to dredged sediment
- Draw parallels between the U.S. EPA's guidance document for the BU of industrial byproducts and U.S. EPA's risk assessment process
- Review how risk assessment allows "clean" or "contaminated" determination for the end use environment
- Examine use of these tools for NbS and NI projects


BENEFICIAL USE FRAMEWORK OVERVIEW

- 1.Permitting Framework
- 2. Risk-based Approach
- 3. Testing and Evaluation
- 4. Alternatives Evaluation

BU REGULATORY FRAMEWORK

FEDERAL

• Issues dredging permit

- Provides environmental performance criteria
- Permit review and concurrence

STATE/TRIBAL/LOCAL

- Provides disposal authorization
- Issues water quality certifications
- Coastal zone consistency

U.S. EPA's RISK-ASSESSMENT FRAMEWORK

Hazard Identification

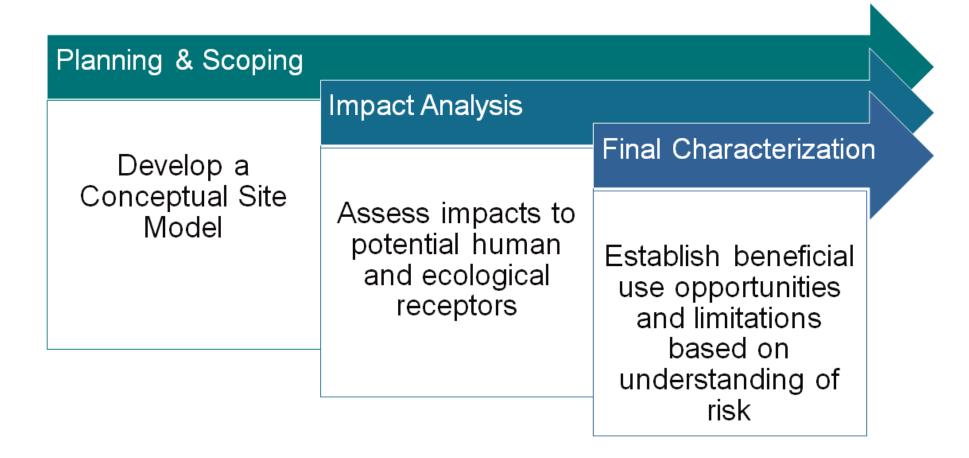
Define the purpose, scope and approach

Problem Formulation

Identify receptors, hazards, and exposure pathways

Analysis

Assess adverse effects


Risk Characterization

Estimate acute and chronic impacts and identify uncertainties

RISK-BASED EVALUATION OF INDUSTRIAL BYPRODUCTS

TESTING AND EVALUATION

• Compare to placement/reference site

- Screen chemical analyses to generic levels
- Advection/dispersion/dilution modeling

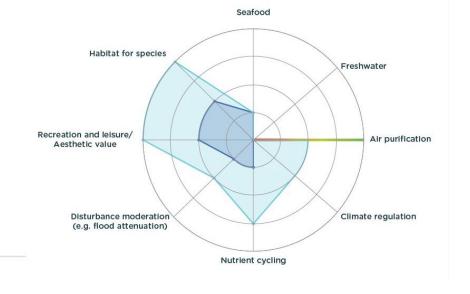
Toxicity Testing

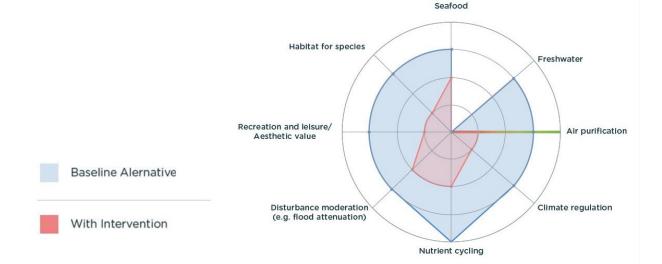
- Elutriate/ sediment toxicity tests
- Bioaccumulation tests

Site-Specific Additional testing when inconclusive or conflicting

BU ALTERNATIVES EVALUATION

- Provides EWN® Opportunities
- Weigh multiple lines-of-evidence
- Legal considerations
- Social, economic, and environmental aspects of alternatives





ECOSYSTEM SERVICES ANALYSIS OF ALTERNATIVES

- Changes in ecosystem services with various alternatives
- Top Graph: Sediment placement to create island habitat
 - Ecosystem services increase compared to baseline
 - -Increased Recreation
 - -Increased Habitat
- Bottom Graph: Sediment placement in wetlands
 - Ecosystem services decline compared to baseline
 - -Decreased Recreation
 - -Decreased Habitat

Baseline Alernative

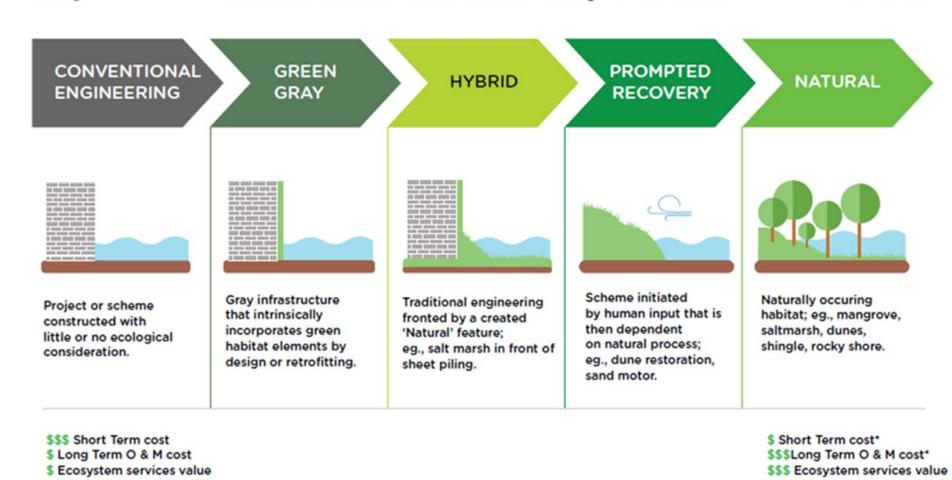
With Intervention

IMPLICATIONS OF BU FOR NbS AND NI

- 1. Value
- 2. Opportunities

DREDGED MATERIAL HAS ECONOMIC AND NATURAL CAPITAL VALUE FOR NbS and NI SOLUTIONS!

- Economic value = market
 worth as a commodity
- Capital asset = resource for use in the production of goods and services
- Natural capital = natural assets that generate "ecosystem services" that yield goods and services, which provide value to humans


ECOSYSTEM SERVICES: PROVISIONING (BROWN), REGULATING (BLUE), CULTURAL (ORANGE), SUPPORTING (GREEN)

CREATIVE BU OPPORTUNITIES EXIST!

Gray — Nature Based and Green-Gray solutions — Green

BU OPPORTUNITIES FOR FROZEN TUNDRA NbS?

U.S. BENEFICIAL USE FRAMEWORK SUMMARY

- Is broadly accepted at the federal, regional, and state levels of governance
- Provides a standard approach to making site-specific determinations about the suitability of dredged material for BU
- Provides testing and evaluation flexibility based on project goals and CSM
- Supports progressive testing and BU modification to reduce risk
- Uses multiple lines of evidence for decision-making
- Leads to more creative opportunities!

Staci Goetz Staci.Goetz@ramboll.com

REFERENCES

- Bridges, T. S., J. K. King, and J. D. Simm. (2021). "Chapter 1: The Need and Opportunity for NNBF: An Introduction to the Guidelines." In International Guidelines on Natural and Nature-Based Features for Flood Risk Management. Edited by T. S. Bridges, J. K. King, J. D. Simm, M. W. Beck, G. Collins, Q. Lodder, and R. K. Mohan. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Bridges, T.S., J. K. King, J. D. Simm, M. W. Beck, G. Collins, Q. Lodder, and Mohan, R. K. eds. (2021). *International Guidelines on Natural and Nature-Based Features for Flood Risk Management*. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Great Lakes Dredging Team. (2020). "Environmental Evaluation and Management of Dredged Material for Beneficial Use: A Regional Manual for the Great Lakes," November 2020.
- Haring, C., R. Schielen, J. Guy, L. Burgess-Gamble, and B. Bledsoe. (2021). "Chapter 16: Fluvial Systems and Flood Risk Management." In *International Guidelines on Natural and Nature-Based Features for Flood Risk Management*. Edited by T. S. Bridges, J. K. King, J. D. Simm, M. W. Beck, G. Collins, Q. Lodder, and R. K. Mohan. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Searcy Bell, K., Boyd, B.M., Goetz, S.L., Hayes, D.F., Magar, V.S., and Suedel, B.. (2021). "Overcoming Barriers to Beneficial Use," Journal of Dredging, 19(2), p 20-42.
- USACE, (2021). "Engineering with Nature: Fact Sheet." Accessed at: https://ewn.erdc.dren.mil/wp-content/uploads/2021/03/EWNFactSheet_Final.pdf
- U.S. EPA. (2021). Risk Assessment- about Risk Assessment, 2021. https://www.epa.gov/risk/about-risk-assessment#whatisrisk
- USEPA. (2016). "A methodology for evaluating beneficial uses of industrial-non-hazardous secondary materials," Office of Resource Conservation and Recovery. EPA 530-R-16-011.
- USEPA and USACE. (2004). "Evaluating Environmental Effects of Dredged Material Management Alternatives A Technical Framework," EPA842-B-92-008, U.S. Environmental Protection Agency and U.S. Army Corps of Engineers, Washington, D.C.

