Innovative Treatment of Wood-Waste Sediments Using Reactive Amendments and DGT Passive Porewater Sulphide Testing Techniques

Presented by Dan Berlin June 15, 2021

Outline

- Site Setting
- Effects of Wood Waste
- Porewater Sulphides Using DGT
- Bench-Scale Treatability Testing
- Pilot Project
 - Construction
 - Year 1 Monitoring

ESQUIMALT HARBOUR

VICTORIA HARBOUR

Ν

North Esquimalt Harbour

- Log booming
- Log storage
- Wood mill operations

Physical Wood Waste Effects

- Logs, bark, wood chips, processed wood (sawdust), and partially decomposed wood fibers
- Slow to decay
- Can isolate benthic organisms from native sediment
- Can be highly flocculent

Chemical and Biological Effects

- Degradation by-products can be toxic to benthic organisms
- Reduced benthic community abundance and diversity
- Reduced survival of bivalves
- *Beggiatoa* spp. bacterial mats

Porewater Sulphides Using DGT

- Diffusive gradient in thin film (DGT)
 - Reliable in situ measure of porewater sulphide
 - Reaction of sulphide with silver iodide gel (white) to produce silver sulphide (black)
 - Intensity of color is proportional to
 - Sulphide on the gel
 - Exposure duration

Porewater Sulphide Concentrations

- Median 25 mg/L
- 2 mg/L can cause toxicity to sensitive species
- Usually but not always colocated with wood waste

Wood Waste Remediation Options

- Monitored natural recovery
- Enhanced natural recovery
- In situ treatment
- Engineered capping
- Dredging

Bench-Scale Treatability Testing

- Sand cover mixed with treatment amendments to reduce bioavailable porewater sulphide
- Siderite dissolves and precipitates iron sulphides (mackinawite)
- Iron and manganese oxide can oxidize sulphide into sulphate

Treatability Setup

- Sulphides built up in overlying water for sand control but not in treatment amendments
- Iron sulphide precipitate

2020 Pilot Project

- Evaluate effectiveness
 - Enhanced natural recovery (sand cover)
 - In situ treatment (sand mixed with siderite)
- Evaluate constructability
 - Blend and place amended sand layer in two wood waste areas
 - Practice area
 - Multiple placement methods
- 5% granular siderite by weight at 30-cm nominal thickness

12 | Innovative Treatment of Wood-Waste Sediments

2020 Pilot Project Construction

- Placement methods
 - Clamshell from above water
 - 2 to 4 m^3 /load
 - Cycle time: 1:52
 - Skip box from above water
 - 6 m³/load
 - Cycle time: 2:36
 - Skip box from just above sediment
 - 6 m³/load
 - Cycle time: 3:00
- Daily bathymetry and dive surveys (18 days)

^{13 |} Innovative Treatment of Wood-Waste Sediments

Pilot Project Work Areas

- Work Area 1
 - Soft wood waste
 - Consolidation and mixing anticipated
- Work Area 2
 - Coarse wood waste
 - Consolidation occurred
- Gas bubbles and sea foam

			X
NO GA	Work	PROF	CT SITE
	Area 1	ESQUIMALT HARBOUR	•
	>		0 400 800 Metres
SMART SLAND		RICHARD	A CONTRACTOR
MCCARTHY		Work	
S. C.		Area 2	
GJETTY			
		INSKIP ISLANDS	PLUMPER BAY
P JETTY		ASHEHEAD	- 1

Pilot Project – Coarse Wood Waste (Work Area 2)

Bathymetry Changes After 1 Year

- Approximately 15-cm lower elevation during first 6 months
- No evidence of mixing, major disturbances, or movement of logs
- Sediment Profile Imaging (SPI) photographs suggest differential settling of fine grains, but layering was not observed

DGT Monitoring – Control Areas 6 and 9

March 2020

October 2020

TA 9: Control, No Action

March 2021

18 | Innovative Treatment of Wood-Waste Sediments

DGT Monitoring – Test Areas 7 and 8

March 2020

October 2020

TA 7: Siderite Amended Sand Cover

March 2021

19 | Innovative Treatment of Wood-Waste Sediments

Sediment Surface: Control – No Action Test Area 9

Sediment Profile: Control – No Action Test Area 9

Sediment Profile: Control – No Action Test Area 6

ANCHOR

22 | Innovative Treatment of Wood-Waste Sediments

Sediment Profile: Sand + Siderite, 30-cm Targeted Thickness – Test Area 3

Sediment Profile: Sand Cover, 30-cm Targeted Thickness – Test Area 4

Sediment Surface: Sand + Siderite Cover, 30-cm Targeted Thickness – Test Area 2

Sediment Profile: Sand + Siderite, 30-cm Targeted Thickness – Test Area 7

Sediment Profile: Sand Cover, 30-cm Targeted Thickness – Test Area 8

Sediment Surface: Sand Only, 30-cm Targeted Thickness – Test Area 8

Year 1 Conclusions

- Similar effectiveness of sand and siderite-amended sand cover
- Slightly elevated sulphide concentrations below 10 cm
 - Sand only in October (8 months)
 - Amended sand in March (12 months)
- Sand only had significant black iron sulphide precipitate and *Beggiatoa*
- Year 2 monitoring to determine longer-term effectiveness of sand cover alone
- Algae and sediment deposition may be contributing to sulphide generation

29 | Innovative Treatment of Wood-Waste Sediments

Questions/ Discussion