
Reservoir Sediment Management: Building a Legacy of Sustainable Water Storage Reservoirs

The nation's 90,000 dams and reservoirs constitute a critical component of the country's infrastructure ensuring the stability of water and energy supplies and flood risk management. However, the reservoir storage capacity, essential to meeting these purposes, has been filling with sediment (clay, silt, sand, gravel, and cobble).

<u>NRSST</u> - The Subcommittee on Sedimentation's National Reservoir Sedimentation and Sustainability Team presents on sustainable solutions to reservoir sediment management.

NRSST Sponsored by the Advisory Committee on Water Information (ACWI), Subcommittee on Sedimentation (SOS)

ACWI, SUBCOMMITTEE ON SEDIMENTATION

Authors

- Timothy Randle, Bureau of Reclamation
- Gregory Morris, GLM Engineering
- Michael Whelan, Anchor QEA, L.L.C.
- Bryan Baker, U.S. Army Corps of Engineers
- George Annandale, Consultant
- Rollin Hotchkiss, Brigham Young University
- Paul Boyd, U.S. Army Corps of Engineers
- J. Toby Minear, Cooperative Institute for Research in Environmental Sciences

Authors

- Frank Weirich, University of Iowa
- Darrell Eidson, U.S. Army Corps of Engineers
- John Shelley, U.S. Army Corps of Engineers
- Rene Vermeeren, U.S. Army Corps of Engineers
- David Wegner, Woolpert Engineering
- Peter Nelson, Colorado State University
- Kevin Jensen, McMillen Jacobs Associates
- Desirée Tullos, Oregon State University

Authors

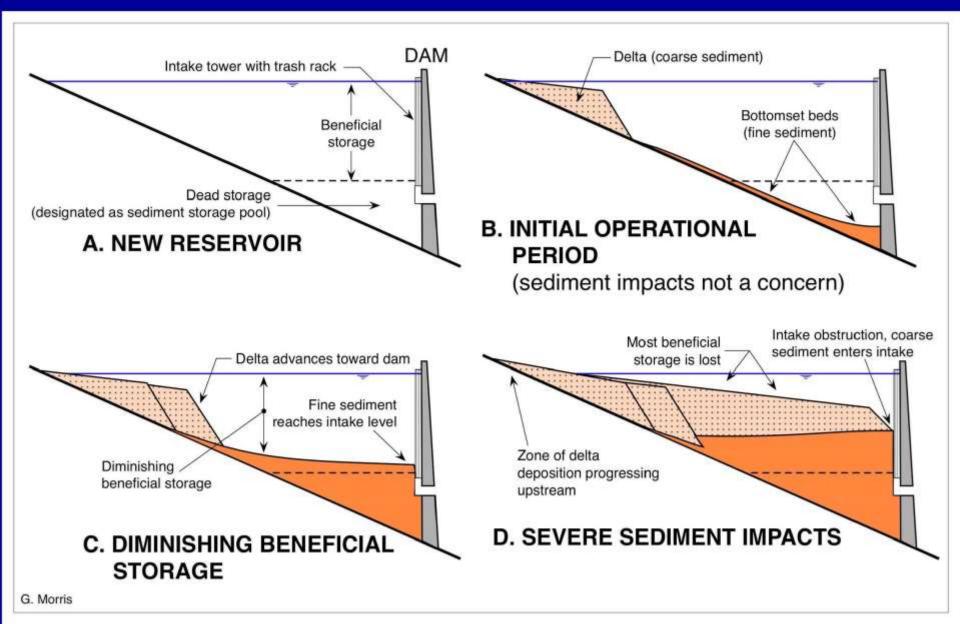
- Stan Ekren, Great Lakes Dredge & Dock Company
- Kent Collins, Bureau of Reclamation
- Mustafa Altinakar, University of Mississippi
- Jon Fripp, Natural Resource Conservation Service
- Meg Jonas, U.S. Army Corps of Engineers (retired)
- Kyle Juracek, U.S. Geological Survey
- Sean Kimbrel, Bureau of Reclamation
- Matt Kondolf, University of California, Berkeley
- Doug Raitt, Denver Water

Reservoir Sediment Design Life

- Typically 50 or 100 years
- Estimate the reservoir sedimentation volume and spatial distribution
- Design the dam's outlet to be above the reservoir sedimentation level over the sediment design life
- Defer future sediment management to future generations

Old Best Management Practice

- NO ACTION, let the reservoir eventually fill with sediment (hopefully after you retire).
- INTERGENERATIONAL INEQUITY
 - 1st generation conceives, plans, designs, and constructs a dam and reservoir.
 - 2nd generation starts receiving benefits, repays capital costs, and pays O&M costs.
 - 3rd generation continues receiving benefits, repaying capital costs, and paying O&M costs.
 - 4th generation pays O&M costs, but not for sediment management.
 - Last generation is stuck with retirement bill and has to develop new water storage at a higher cost.



Reservoir Sedimentation

Without Reservoir Sediment Management

The eventual costs can be expensive

- Downstream channel degradation, infrastructure erosion, and habitat loss
- Dam decommissioning
- New dam construction needed to create replacement water storage
 - With 90,000 dams in the national inventory, the best dam sites have already been taken

Without Reservoir Sediment Management

The eventual costs can be expensive:

- Lost storage capacity over time (with increased water demands over time)
- Buried or impaired dam outlets, reservoir water intakes, boat ramps & marinas

Without Reservoir Sediment Management

The eventual costs can be expensive:

- Abraded turbines, outlets, or spillways
- Reduced surface area for lake recreation
- Upstream channel aggradation and increases in flood stage and groundwater

Sedimentation Abrasion Impacts

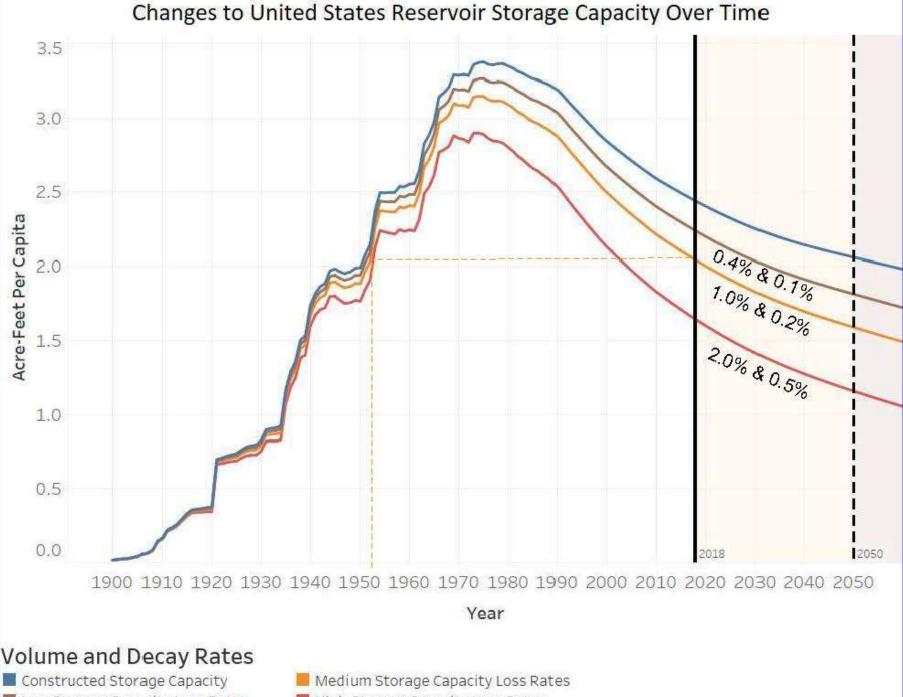
 Sand or gravel is very abrasive to dam outlets, turbines, and spillways

San Clemente Reservoir

Untitled Map Write a description for your map

San Clemente Dam

Legend f San Clemente Dam


N

1000 ft

Long Term Outlook

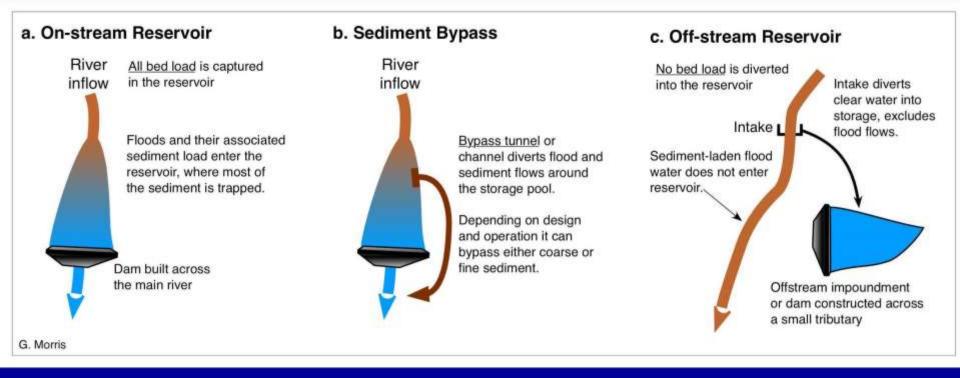
- Population and water demand will increase over time while reservoir storage capacity reduces due to sedimentation.
- In some regions, climate change may lead to increased hydrologic variability.

Low Storage Capacity Loss Rates

High Storage Capacity Loss Rates

Reservoir Sediment Management Strategy

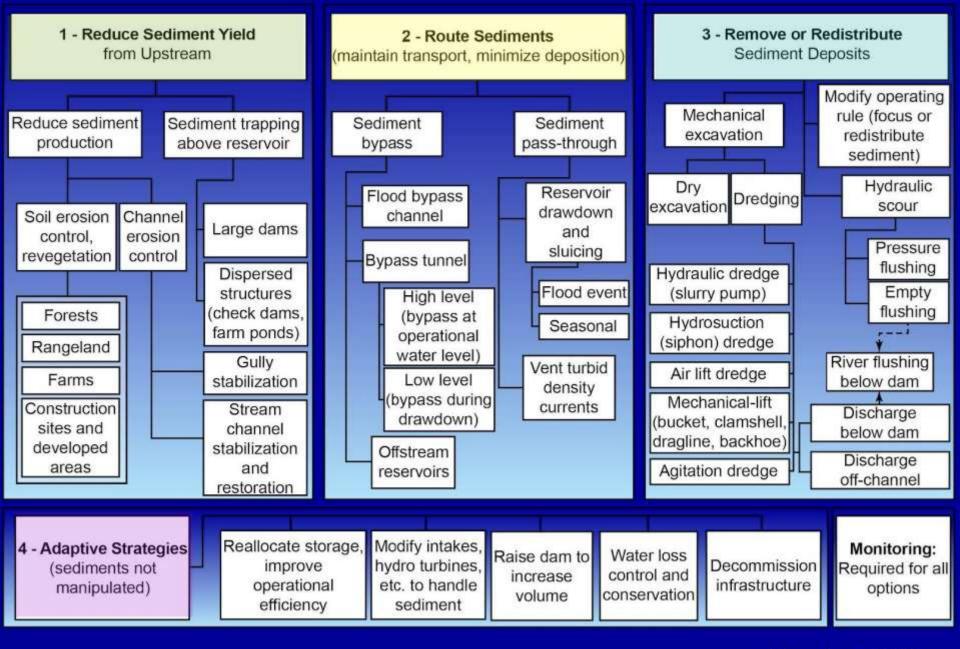
- Focus on managing recent or future sedimentation rather than past sedimentation
- Manage sedimentation each year
- Over the long term, sediment will have to pass downstream or supply other beneficial uses



Reduce Sediment Yield

 Reduce sediment production Soil erosion control and revegetation Landslide erosion control Channel erosion control Sediment trapping above reservoir Large dams Small check dams and farm ponds Gully stabilization Stream channel stabilization and restoration

Route Sediment: Comparison of Strategies



Morris, 2019

Reservoir Sediment Routing

Tunnel bypass

Morris, 2015

Sediment Continuity

- Sediments passing through a reservoir may slow, stop, or reverse downstream channel erosion and degradation.
- Over the long term, sediment management cannot be allowed to overload the downstream transport capacity
- Some downstream sediment deposition may be acceptable so long as there is not unmitigated harm to people, property, or native species.

Remove or Redistribute SedimentsDrawdown flushing for river erosion

Headcut Erosion in Spenser Reservoir

Sediment Flush below Spenser Dam

Remove or Redistribute Sediments

- Mechanical or hydraulic dredging or dry excavation
 - Transport by slurry pipeline, truck, or conveyor belt for discharge to the downstream river channel, disposal site, or beneficial use

Beneficial Uses

Soil augmentation for agriculture

- Land development
- Construction fill
- Concrete aggregate

Wetland and other shallow water habitat creation

Conclusions

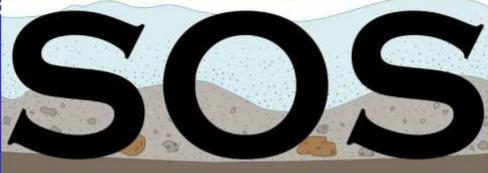
- Monitoring is now more important because most reservoirs are in the 2nd half of their sediment-design life.
- A decade or more may be needed to plan and implement sustainable sediment management plans
- No action will lead to the eventual retirement of the dam and reservoir.

Conclusions

 Sustainable reservoir sediment management may harm introduced sport fisheries, but reservoirs cannot trap sediment forever.

 Releasing sediments at a point downstream of valuable fisheries may be a method to avoid impacts.

Conclusions


 Compare cost and impacts of reservoir sediment management with the costs of eventually retiring the reservoir and constructing additional water storage elsewhere.

 Future generations should be considered when choosing a reservoir sediment management plan.

Resolution on Reservoir Sedimentation and Sustainability

 The SOS encourages all Federal agencies to develop long-term reservoir sediment-management plans for the reservoirs that they own or manage by 2030. These management plans should include either the implementation of sustainable sediment-management practices or eventual retirement of the second se

ACWI, SUBCOMMITTEE ON SEDIMENTATION

NRSST web page on SEDHYD

The first iteration of the NRSST web page on SEDHYD is now live where people can access THE white paper and get links to our recorded webinars, video, and answers to frequently asked questions.

https://www.sedhyd.org/reservoir-sedimentation/

SEDHYD - Reservoir Sedimentation and Sustainable Management

Sedimentation management is critically important to the future of the nation's reservoirs and all the benefits they provide. SEDHYD is providing useful information on this important topic from the National Reservoir Sedimentation and Sustainability Team, which is comprised of engineers and scientists from multiple Federal and local agencies, universities, consultants, and industry.

White Paper

Reservoir Sediment Management: Building a Legacy of Sustainable Water Storage Reservo

Watch the following Recorded Webinars:

Reservoir Sedimentation Management – Big Deal! Why should we even care about it?

Dr. George Annandale, P.E.

https://cires.colorado.edu/events/reservoir-sedimentation-management-big-dealwhy-should-we-even-care-about-it

Sedimentation Management Alternatives at Reservoirs

Dr. Greg Morris, P.E.

https://cires.colorado.edu/events/reservoir-sedimentation-management-optionsand-data-needs

Sedimentation Management for Multi-Purpose

Reservoirs: A Federal Perspective

Dr. Tim Randle, P.E. and Dr. Paul Boyd, P.E.

https://cires.colorado.edu/events/sedimentation-management-multi-purposereservoirs-federal-perspective Watch the following Recorded Webinars:

Permitting for reservoir sediment management

Dr. Rollin Hotchkiss, P.E. and David Olson

https://cires.colorado.edu/events/permitting-reservoir-sedimentationmanagement

Reservoir sedimentation monitoring

Dr. Greg Morris, P.E. https://cires.colorado.edu/events/sedimentation-monitoring

Economics of Sustainable Reservoir Sediment

Management

Dr. George Annandale, P.E. and

Dr. Rollin Hotchkiss, P.E.

https://cires.colorado.edu/events/economics-sustainable-reservoir-sediment-

management

Answers to Frequently Asked Questions at https://acwi.gov/sos/faqs_2017-05-30.pdf