A STUDY ON THE CLAY ADHESION FACTOR

Xiuhan Chen, Jan van den Broecke, Gongxun Liu, Guojun Hong & Sape A. Miedema

Delft University of Technology, DEME, CCCC-NERCD

-----WEDA Dredging Summit & Expo, June 4-7, 2019, Chicago

Contents

- Introduction the NEED in environmental dredging
- Experimental Study
- Experimental Results
- Conclusions

)elft

Introduction - the NEED in environmental dredging & trenching

- Large surfaces on dredging tools can generate a lot of resistance (-> clamshell buckets, trenching for subsea cables)
- No relation between the internal shear strength (cohesion) and the external shear strength (adhesion or stickiness) in clay has been established yet
- Previous research by Thomas Combe

*Miedema, S.A. and Vlasblom, W.J. (2006). "The Closing Process of Clamshell Dredges in Water Saturated Sand". CEDA African Section: Dredging Days 2006 – protection of the coastline, dredging sustainable development *The PL3 V-shaped Pipe Burial Plough Designed by Royal IHC. Retrieved from IHC, 2009

Introduction

• Cutting forces on bucket edge:

Introduction: Internal and External Shear Strength

Adhesion

- Phenomenon of cohesive soil sticking to a foreign body
- Can vary between 100% of the internal shear strength down to 0%
- Sum of electro-chemical and mechanical effects, but the latter is strongly dominant

Introduction: Existing α-cu Models

- Foundation Engineering & Agriculture: Back calculated from pile pullout force
- Measure for total tangential resistance, not 'pure' adhesion
 - -> effectively these are τc_{u} models

Experimental Study: Adhesion Test Setup (ATS) 1.

- $\tau = \frac{F}{2A}$ where A is the area of the contact area
- $\tau = a + \sigma \tan \delta$

ŤUDelft

- Pneumatic cylinder
- Sample container 2.
- 3. Blade attachment point
- Force sensor 4.
- 5. Electric drive

Experimental Study: Test Matrix

Blade Pull-out Tests:

- Two 'types' of clay: preconsolidated to 10 undrained shear strengths
- Tests at 5 normal pressures
- Test at 1 speed: 1mm/s

Undrained Direct Shear Tests:

Tests at 4 normal pressures

Clay 1				Wuhan		
	$c_u 1$	$\sigma 1$	$\sigma 2$	σ 3	$\sigma 4$	$\sigma 5$
	$c_u 2$	$\sigma 1$	$\sigma 2$	σ 3	$\sigma 4$	$\sigma 5$
	$c_u 3$	$\sigma 1$	$\sigma 2$	$\sigma 3$	$\sigma 4$	$\sigma 5$
	$c_u 4$	$\sigma 1$	$\sigma 2$	σ 3	$\sigma 4$	$\sigma 5$
	$c_u 5$	$\sigma 1$	$\sigma 2$	σ 3	$\sigma 4$	$\sigma 5$
Clay 2	Lianyungang					
	$c_u 1$	$\sigma 1$	$\sigma 2$	σ 3	$\sigma 4$	$\sigma 5$
	$c_u 2$	$\sigma 1$	$\sigma 2$	σ 3	$\sigma 4$	$\sigma 5$
	$c_u 3$	$\sigma 1$	$\sigma 2$	σ 3	$\sigma 4$	$\sigma 5$
	$c_u 4$	$\sigma 1$	$\sigma 2$	σ 3	$\sigma 4$	$\sigma 5$
	$c_u 5$	$\sigma 1$	$\sigma 2$	σ 3	$\sigma 4$	$\sigma 5$

Clay samples

• •	

Soil Types Density in [kg/m ³]		Mineralogy Analysis	Plastic Limit Liquid Limit [w / w / %]
1: Wuhan clay	Wuhan clay2180Quartz, Calcite, Graphite, Ky Cordierite, Orthoclase, Anorthite,		14.2 23.4
2: Lianyungang clay	1950	50 Quartz, Graphite, Sylvite, Spinel, Sodalite, Siderite, Rutile, Magnetite, Magnesite, Hematite, Calcite	

Direct Shear Tests

11

Results: Direct shear results and Blade Pull-out tests

Results: Blade Pull-out tests

Normal Stress vs. shear stress with a linear fit according to the Mohr-Coulomb failure criterion Soil 1 -15.9% [w/w] Soil 2 – 12.0% [w/w]

The external friction angle could be up to 30° shall not be neglected!!!

Results: the α **-c**_u **correlation**

2 types of models: the adhesion factor models based on
Total external shear resistance
the true adhesion of the soil at zero normal stress.

• *the exponential correlation* provide the best description of the adhesion factor - undrained shear strength relation .

Dimensionless cohesion versus the adhesion factor. The filled dots represent data obtained in tests on soil 1 circles represent data obtained in tests on soil 2. The black line represents the best Exponential fit.

Conclusion

- The external friction angle could be up to 30°, shall not be neglected
- adhesion in medium-high strength clay is small, safe for environmental dredging practice
- adhesion factor in low strength cohesive soil could be up to 80%
- adhesion factor is exponentially correlated with undrained shear strength

Conclusion

This leads to better, more efficient design of the environmental dredging equipment, requiring less power, MORE SUSTAINABLE!

ACKNOWLEDGEMENTS

The authors appreciate the help from Mr. Robert Ramsdell.

THANK YOU VERY MUCH!!!

