

Cutter Head Spillage

Dr.ir. Sape A. Miedema Head of Studies MSc Offshore & Dredging Engineering & Marine Technology Associate Professor of Dredging Engineering

Thursday, June 13, 2019

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering

Delft University of Technology – Offshore & Dredging Engineering

Dredging A Way Of Life

© S.A.M

What is Offshore & Dredging Engineering?

Offshore & Dredging Engineering covers everything at sea that does not have the purpose of transporting goods & people and no fishery.

The Cutter Head

FUDDEIft Delft University of Technology Offshore & Dredging Engineering

The Mashour

Rock Cutter Heads

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering

Delft University of Technology

Offshore & Dredging Engineering

Spillage

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering

Delft

Delft University of Technology

Offshore & Dredging Engineering

Definitions

Different Flows in a Drag Head

Delft University of Technology – Offshore & Dredging Engineering

 $rac{\eta_1}{\eta_2}$

 $\frac{P_1}{P_2}$

Affinity Laws

$$F = \mathbf{m} \cdot \mathbf{\omega}^{2} \cdot \mathbf{R} \quad \text{with: } \mathbf{m} = \rho_{\mathbf{m}} \cdot \frac{\pi}{4} \cdot \mathbf{D}^{2} \cdot \mathbf{w}$$

$$p = \frac{F}{A} = \frac{\rho_{\mathbf{m}} \cdot \frac{\pi}{4} \cdot \mathbf{D}^{2} \cdot \mathbf{w} \cdot \mathbf{\omega}^{2} \cdot \mathbf{R}}{\pi \cdot \mathbf{D} \cdot \mathbf{w}} = \frac{1}{8} \cdot \rho_{\mathbf{m}} \cdot \mathbf{\omega}^{2} \cdot \mathbf{D}^{2}$$

$$Q = \mathbf{\omega} \cdot \mathbf{R} \cdot \pi \cdot \mathbf{D} \cdot \mathbf{w} = \frac{\pi}{2} \cdot \mathbf{\omega} \cdot \mathbf{D}^{2} \cdot \mathbf{w}$$

$$= 1 \quad \text{and} \quad \frac{p_{1}}{p_{2}} = \frac{n_{1}^{2}}{n_{2}^{2}} \cdot \frac{D_{1}^{2}}{D_{2}^{2}} \cdot \frac{\rho_{\mathbf{m}1}}{\rho_{\mathbf{m}2}} \quad \text{and} \quad \frac{Q_{1}}{Q_{2}} = \frac{n_{1}}{n_{2}} \cdot \frac{D_{1}^{2}}{D_{2}^{2}} \cdot \frac{w_{1}}{w_{2}}$$

$$= \frac{n_{1}^{3}}{n_{2}^{3}} \cdot \frac{D_{1}^{4}}{D_{2}^{4}} \cdot \frac{\rho_{\mathbf{m}1}}{\rho_{\mathbf{m}2}} \cdot \frac{w_{1}}{w_{2}} \quad \text{and} \quad \frac{T_{1}}{T_{2}} = \frac{n_{1}^{2}}{n_{2}^{2}} \cdot \frac{D_{1}^{4}}{D_{2}^{4}} \cdot \frac{\rho_{\mathbf{m}1}}{\rho_{\mathbf{m}2}} \cdot \frac{w_{1}}{w_{2}}$$

Cutter Head Dimensions

Cutter Head Segments

The Flows in a Cutter Head

Delft University of Technology – Offshore & Dredging Engineering

Offshore & Dredging Engineering

Flows & Spillage Homogeneous

$$\begin{aligned} \mathbf{Q}_{1,\text{out}} &= \alpha \cdot 2 \cdot \pi \cdot \omega \cdot \mathbf{r}_{o,1}^{2} \cdot \\ &\left(\frac{\mathbf{f}}{(1+\mathbf{f})} \cdot \mathbf{w} - \frac{1}{(1+\mathbf{f})} \cdot \frac{1}{2 \cdot \pi \cdot \alpha \cdot \omega} \cdot \left(\frac{\mathbf{Q}_{m} - \mathbf{Q}_{c} - \mathbf{Q}_{a}}{\mathbf{r}_{o,1}^{2} \cdot (1-\mathbf{P}_{c})}\right)\right) \cdot (1-\mathbf{P}_{c}) \\ &\mathbf{Q}_{2,\text{in}} = 2 \cdot \pi \cdot \alpha \cdot \omega \cdot \left(\mathbf{r}_{o,1}^{2} - \mathbf{r}_{o,2}^{2}\right) \cdot \\ &\left(\frac{1}{(1+\mathbf{f})} \cdot \mathbf{w} + \frac{1}{(1+\mathbf{f})} \cdot \frac{1}{2 \cdot \pi \cdot \alpha \cdot \omega} \cdot \left(\frac{\mathbf{Q}_{m} - \mathbf{Q}_{c} - \mathbf{Q}_{a}}{\mathbf{r}_{o,1}^{2} \cdot (1-\mathbf{P}_{c})}\right)\right) \cdot (1-\mathbf{P}_{c}) \\ &\mathbf{Spillage} = \frac{\mathbf{Q}_{1,\text{out}}}{\mathbf{Q}_{m} + \mathbf{Q}_{1,\text{out}}} = \frac{\mathbf{Q}_{1,\text{out}} \cdot \mathbf{C}_{\text{vs}}}{\mathbf{Q}_{s}} \qquad \mathbf{C}_{\text{vs}} = \frac{\mathbf{Q}_{s}}{\mathbf{Q}_{m} + \mathbf{Q}_{1,\text{out}}} \end{aligned}$$

Production den Burger

Figure 6.7: Production percentage vs. inverse of the flow number in the under-cut situation for cutting of gravel (left plot) and the results of the sand and plastic particles (right plot)

Delft University of Technology – Offshore & Dredging Engineering

Scale Laws

$$\frac{\mathbf{Q_c} \cdot (1-\mathbf{n})}{\mathbf{Q_m}} = \mathbf{cons} \tan t$$

$$Bu = \frac{\omega \cdot r_r^3}{Q_m} = \cos \tan t$$

$$\frac{\mathbf{v_t} \cdot \mathbf{r_r^2}}{\mathbf{Q_m}} = \cos \tan t$$

$$\frac{\omega \cdot \mathbf{r_r}}{\mathbf{v_t}} = \text{constant}$$

Spillage Non-Homogeneous

Spillage =
$$\frac{Q_{1,out}}{Q_m + Q_{1,out}} = \frac{Q_{1,out} \cdot C_{vs}}{Q_s}$$

Spillage =
$$\frac{Q_{1,out} \cdot (C_{vs} + (C_{vs,max} - C_{vs}) \cdot Factor)}{Q_s}$$

With : $C_{vs,max} = \frac{Q_s}{Q_{1,out}}$ and $C_{vs,max} < 0.5$

Factor =
$$0.1 \cdot \left(\frac{\mathbf{v}_{t} \cdot \sin(\theta) \cdot \pi \cdot \mathbf{r}_{r}^{2}}{\mathbf{Q}_{m}}\right)^{2} + \left(\frac{\mathbf{Bu}}{\mathbf{10.8}}\right)^{3}$$

Factor ≤ 1

Model versus Experiments in Sand

Delft University of Technology – Offshore & Dredging Engineering

Model versus Experiments in Rock

Delft University of Technology – Offshore & Dredging Engineering

Euler Equation

$$\Delta \mathbf{p}_{\mathrm{E}} = \boldsymbol{\rho}_{\mathrm{m}} \cdot \mathbf{u}_{\mathrm{o}} \cdot \left(\mathbf{u}_{\mathrm{o}} - \frac{\mathbf{Q} \cdot \cot(\boldsymbol{\beta}_{\mathrm{o}})}{2 \cdot \pi \cdot \mathbf{r}_{\mathrm{o}} \cdot \mathbf{w}} \right) - \boldsymbol{\rho}_{\mathrm{m}} \cdot \mathbf{u}_{\mathrm{i}} \cdot \left(\mathbf{u}_{\mathrm{i}} - \frac{\mathbf{Q} \cdot \cot(\boldsymbol{\beta}_{\mathrm{i}})}{2 \cdot \pi \cdot \mathbf{r}_{\mathrm{i}} \cdot \mathbf{w}} \right)$$

$$\Delta \mathbf{p}_{\mathrm{E}} = \rho_{\mathrm{m}} \cdot \omega^{2} \cdot \left(\mathbf{r}_{\mathrm{o}}^{2} - \mathbf{r}_{\mathrm{i}}^{2}\right) - \frac{\rho_{\mathrm{m}} \cdot \omega \cdot \mathbf{Q}}{2 \cdot \pi \cdot \mathbf{w}} \cdot \left(\cot\left(\beta_{\mathrm{o}}\right) - \cot\left(\beta_{\mathrm{i}}\right)\right)$$

$$\mathbf{Q} = \boldsymbol{\alpha} \cdot \mathbf{2} \cdot \boldsymbol{\pi} \cdot \boldsymbol{\omega} \cdot \mathbf{r}_{0}^{2} \cdot \mathbf{w}$$

$$\Delta \mathbf{p}_{\mathrm{E}} = \boldsymbol{\rho}_{\mathrm{m}} \cdot \boldsymbol{\omega}^{2} \cdot \left(\mathbf{r}_{\mathrm{o}}^{2} - \mathbf{r}_{\mathrm{i}}^{2}\right) - \boldsymbol{\alpha} \cdot \boldsymbol{\rho}_{\mathrm{m}} \cdot \boldsymbol{\omega}^{2} \cdot \mathbf{r}_{\mathrm{o}}^{2} \cdot \left(\cot\left(\boldsymbol{\beta}_{\mathrm{o}}\right) - \cot\left(\boldsymbol{\beta}_{\mathrm{i}}\right)\right)$$

$$\Delta \mathbf{p}_{\mathrm{E}} = \rho_{\mathrm{m}} \cdot \omega^{2} \cdot \left(\left(\mathbf{r}_{\mathrm{o}}^{2} - \mathbf{r}_{\mathrm{i}}^{2} \right) - \alpha \cdot \mathbf{r}_{\mathrm{o}}^{2} \cdot \left(\cot\left(\beta_{\mathrm{o}}\right) - \cot\left(\beta_{\mathrm{i}}\right) \right) \right)$$

Cutter Head Dimensions

Cutter Head Segments

The Flows in a Cutter Head

Delft University of Technology – Offshore & Dredging Engineering

The Cutter Head in the Bank

The Cutter Head in the Bank

Flows

$$Q_{1,\text{out}} = \alpha \cdot 2 \cdot \pi \cdot \omega \cdot r_{0,1}^2 \cdot (1 - P_{c,1}) \cdot \left(\frac{f}{(1+f)} \cdot w - \frac{1}{(1+f)} \cdot \frac{1}{2 \cdot \pi \cdot \alpha \cdot \omega} \cdot \left(\frac{Q_m - Q_c - Q_a}{r_{0,1}^2 \cdot (1 - P_{c,1})}\right)\right)$$

$$\begin{aligned} \mathbf{Q}_{2,\mathrm{in}} &= 2 \cdot \pi \cdot \alpha \cdot \omega \cdot \left(\mathbf{r}_{0,1}^2 - \mathbf{r}_{0,2}^2\right) \cdot \left(1 - \mathbf{P}_{\mathrm{c},2}\right) \cdot \\ &\left(\frac{1}{(1+\mathrm{f})} \cdot \mathrm{w} + \frac{1}{(1+\mathrm{f})} \cdot \frac{1}{2 \cdot \pi \cdot \alpha \cdot \omega} \cdot \left(\frac{\mathbf{Q}_{\mathrm{m}} - \mathbf{Q}_{\mathrm{c}} - \mathbf{Q}_{\mathrm{a}}}{\mathbf{r}_{0,1}^2 \cdot \left(1 - \mathbf{P}_{\mathrm{c},1}\right)}\right) \right) \end{aligned}$$

Spillage Non-Homogeneous

Spillage =
$$\frac{Q_{1,out}}{Q_m + Q_{1,out}} = \frac{Q_{1,out} \cdot C_{vs}}{Q_s}$$

Spillage =
$$\frac{Q_{1,out} \cdot (C_{vs} + (C_{vs,max} - C_{vs}) \cdot Factor)}{Q_s}$$

With : $C_{vs,max} = \frac{Q_s}{Q_{1,out}}$ and $C_{vs,max} < 0.5$

Factor =
$$0.1 \cdot \left(\frac{\mathbf{v}_{t} \cdot \sin(\theta) \cdot \pi \cdot \mathbf{r}_{r}^{2}}{\mathbf{Q}_{m}}\right)^{2} + \left(\frac{\mathbf{Bu}}{\mathbf{10.8}}\right)^{3}$$

Factor ≤ 1

Production den Burger

Figure 6.7: Production percentage vs. inverse of the flow number in the under-cut situation for cutting of gravel (left plot) and the results of the sand and plastic particles (right plot)

Delft University of Technology – Offshore & Dredging Engineering

Model versus Experiments in Sand

Delft University of Technology – Offshore & Dredging Engineering

Model versus Experiments in Rock

Delft University of Technology – Offshore & Dredging Engineering

Filling Degree

Figure 2. Model cutter positioned in breach.

Delft University of Technology Offshore & Dredging Engineering

Filling Degree

FinalSpillage = Spillage · FillingDegree + (1 – FillingDegree)

FUDDEIft Delft University of Technology Offshore & Dredging Engineering

Filling Ratio in Sand

Delft University of Technology – Offshore & Dredging Engineering

Filling Ratio in Rock

Delft University of Technology – Offshore & Dredging Engineering

Ladder Angle

Delft University of Technology – Offshore & Dredging Engineering

Ladder Angle

Delft University of Technology – Offshore & Dredging Engineering

Ladder Angle Influence

FinalSpillage = Spillage · FillingDegree + (1 – FillingDegree)

Ladder Angle 45°

Delft University of Technology – Offshore & Dredging Engineering

Ladder Angle 25°

Delft University of Technology – Offshore & Dredging Engineering

Validation Miltenburg 1983

The 40 cm Model Cutter Head for Rock

Miltenburg (1982) used 6 different configurations of the crown cutter head and of course carried out the experiments overcutting and undercutting. The 6 configurations are:

- No skirts, short cone, suction mouth at 0°.
- No skirts, long cone, suction mouth at 0°.
- No skirts, long cone, suction mouth at +30°.
- No skirts, long cone, suction mouth at -30°.
- Skirts, long cone, suction mouth at 0°.

Offshore & Dredging Engineering

Skirts, long cone, suction mouth at +30°.
 Besides the 6 configurations, each test has been carried out overcutting and undercutting. So, many subsets of experiments can be made.

The Cone and the Short Cone

Skirts Inside the Cutter Head

Data Miltenburg with Lower Limit

The lower limit is determined from n=100 rpm and $v_m=3$ m/s. No skirts, suction mouth normal.

Delft University of Technology Offshore & Dredging Engineering

Data Miltenburg with Upper Limit

Delft University of Technology Offshore & Dredging Engineering

Conclusions

- An analytical model has been derived and validated.
- The ratio of the rotating volume flow inside the cutter head to the mixture flow gives a usefull dimensionless number named the Burger number.
- Below a certain Burger number there is no spillage, so the total flow into the cutter head equals the mixture flow into the suction mouth.
- Above this Burger number, the spillage increases nonlinear. The higher the Burger number the smaller the increase of the spillage.
- The Miltenburg data indicate the spillage does not reach 100% at very high Burger numbers.

Delft University of Technology Offshore & Dredging Engineering Terminal settling velocity of the particles and ladder angle play an important role in the spillage model.
Delft University of Technology – Offshore & Dredging Engineering

Conclusions Final Equation

Spillage =
$$\frac{Q_{1,out}}{Q_m + Q_{1,out}} = \frac{Q_{1,out} \cdot C_{vs}}{Q_s}$$

Spillage =
$$\frac{Q_{1,out} \cdot (C_{vs} + (C_{vs,max} - C_{vs}) \cdot Factor)}{Q_s}$$

With : $C_{vs,max} = \frac{Q_s}{Q_{1,out}}$ and $C_{vs,max} < 0.5$

Factor =
$$0.1 \cdot \left(\frac{\mathbf{v}_t \cdot \sin(\theta) \cdot \pi \cdot \mathbf{r}_r^2}{\mathbf{Q}_m}\right)^2 + \left(\frac{\mathbf{B}\mathbf{u}}{\mathbf{10.8}}\right)^3 - \left(\frac{\mathbf{B}\mathbf{u}}{\mathbf{12}}\right)^4$$

Factor ≤ 1

Questions?

Delft University of Technology – Offshore & Dredging Engineering

Delft