The Presence of Microplastics in Bottom Sediments from US Waterways

J. L. Wilkens, A.D. McQueen, B. C. Suedel,* and J. J. LeMonte

Research Biologist Environmental Laboratory Engineer Research and Development Center Vicksburg, MS 39180 USA

WEDA Chicago

5 June 2019

Innovative solutions for a safer, better world

WHAT IS A MICROPLASTIC?

< 5 mm Microplastics are small pieces of plastic < 5 mm

L)

Large microplastics (1-5 mm)

S

Small microplastics (1 µm-1 mm)

Photo by Dustan Woodhouse on Unsplash

WHAT IS A MICROPLASTIC?

Primary microplastics

Specifically engineered for various applications such as personal care products. Can be in the form of preproduction pellets.

Photo by Parks Canada

02 Se

Secondary microplastics

Plastics resulting from degradation of macroplastics caused by various reasons (i.e., UV radiation, abrasion, degradation)

Photo by NOAA

WHY?

- 1) Microplastics are 'emerging contaminants'
- 2) Microplastics are ubiquitous in the environment
- 3) Bioaccumulation potential increases with decreasing size = widespread risk of exposure
- 4) Many studies have shown aquatic species affected by microplastics
- 5) Are bottom sediments to be dredged different from other sediments?

STUDY QUESTION

Do microplastics found in federal navigation channel sediments occur at a greater abundance than other similar environments?

OBJECTIVES:

- 1) To measure the occurrence and abundance of microplastics in sediments collected from several federal navigation channels.
- 2) To compare the abundance of microplastics in federal navigation channel sediments with the abundance of microplastics found in other sediments in North America and worldwide.

METHODS

PLASTIC IDENTIFICATION

- Microplastics were identified under the stereo microscope (x40)
- Physical properties (e.g., texture, flexibility)
- Needle probing; melting with hot needle
- Visual inspection by low-powered microscopy accepted method
- Fourier transform infrared (FTIR) spectrometer analysis

METHODS

Microplastics can be categorized as follows:

<u>Fibers</u>: short to long, different thickness, variety of colors, bend but don't break <u>Films</u>: usually thin, flexible, transparent, irregular shape <u>Foams</u>: originate from Styrofoam, white to yellow colored, soft, irregular shape <u>Fragments</u>: rigid, thick, sharp crooked edges, irregular, variety of colors <u>Spheres/Granules</u>: round, small (<1 mm diameter), natural colors, transparent

RESULTS

RESULTS

RESULTS – Abundance

RESULTS – Sample Comparisons

RESULTS - Composition

Fourier transform infrared (FTIR) spectrometer analysis:

- Results yielded 14 polymer types
- Polyethylene:propylene (PEP) particles were most abundant, occurring in 100% of samples examined
- Next most abundant were PS and PS Types: polymethyl methacrylate, polystyrene (PS), polystyrene:4-vinylpyridine (PS type), polystyrene:acrylonitrile:MMA (PS type), and polystyrene:vinylidene chloride (PS type)
- Films (100%), foams (100%), fibers (92%), and fragments (74%) were mainly composed of PEP
- Spheres were composed of mainly PS and PS types (58%)

RESULTS - Imaging

Images of microplastics extracted from bottom sediment samples: sphere (A), fragment (B), fiber (C), foam (D), and films (E).

RESULTS: Select Studies Reporting Microplastics in Marine and Freshwater Sediments

World

Location	Number of particles $(\overline{x} \pm SD)$	Reference
Gulf of Cadiz	75 ± 98 kg dry	Frias et al. 2016
Baltic Sea	22 ± 5 kg dry	Graca et al. 2017
Mediterranean Sea	270 ± 313 kg dry	Alomar et al 2016
Bizerte Lagoon, Tunisia	7,960 kg dry	Abidli et al. 2017
Lagoon of Venice	1,445 ± 458 kg dry	Vianello et al. 2013
North Sea	167 ± 92 kg dry	Claessens et al. 2011
Derwent Estuary, Tasmania	1,808 kg dry	Ling et al. 2017
North Sea	2,460 ± 1,493 kg dry	Leslie et al. 2017
Durban Bay, S.A.	1,165 kg dry	Naidoo et al. 2015
R. Rhine, Main	904 ± 1,064 kg dry	Klein et al. 2015
urban canal	2,071 ± 4,146 kg dry	Leslie et al. 2017
R. Thames trib.	350 ± 216 kg dry	Horton et al 2017

North America

Location	Number of particles $(\overline{x} \pm SD)$	Reference
Lake Ontario	352 ± 374 kg dry	Corcoran et al. 2015
Lake Ontario	980 ± 1,072 kg dry	Ballent et al. 2016
Ottawa R.	220 kg dry	Vermaire et al. 2017
Maine & Florida Coasts	113 kg dry	Graham and Thompson 2009

USACE Study Mean

1,611 ± 1,309 kg dw sediment (range 217-5,019).

SUMMARY

OBJECTIVE 1: Microplastic abundance and characterization

- Microplastics observed in 100% of samples examined
- Overall average number of particles in the federal navigation channels and reference areas sampled was **1,611 ± 1,309 kg dw sediment (range 217-5,019)**
- In order of decreasing occurrence: fragments=fibers>spheres>films>foams

OBJECTIVE 2: Literature Review

- Investigators found an abundances of microplastics in bottom sediments worldwide
- Microplastics observed in 100% of samples
- In general, microplastics were observed highest in bottom sediments nearer more populated ports and harbors as compared to areas more distant from population centers
- Microplastics appear ubiquitous in bottom sediments

ACKNOWLEDGEMENTS

Thanks to

Thanks to our ERDC teammates for providing sediments.

This research was funded by

U.S. Army Corps of Engineers, U.S. Army Engineer Research and Development Center, Dredging Operations and Environmental Research Program, Todd Bridges, Director. <u>https://doer.el.erdc.dren.mil/</u>