

The Gravity of Fall Protections Use: An Analysis of Available Data PRESENTER: CONNOR TENNANT, PE

AUTHORS: C. TENNANT, PE; J. HENRIKSEN, PE

About Me

Equipment Design Engineer (2012-2017)

- Developed Installations for use with fall protection and to mitigate fall hazards
- Certified Fall Protection Designer (Gravitec Systems, Inc.)

Production Engineer (Current)

Above all else a safety conscious advocate

About Me

WEDA EXPO 2018 MANSON CONSTRUCTION CO.

Outline of Presentation

- Hierarchy of Controls
- Briefly Discuss OSHA Regulations
 - Baseline of general requirements for Construction Industry
 - Other regulations may govern Marine Construction and Dredging
- Review Common Fall Protection Lanyards and Self Retracting Devices
- Importance of Fall Protection based on Available Data
 - Data Sources
 - Bureau of Labor Statistics (BLS)
 - National Institute for Occupational Safety and Health (NIOSH)
 - Fatality Assessment and Control Evaluation (FACE) Program
- Review Clearance Requirements and Estimated Energies Developed in the Event of a Fall
- Provide Examples on How Manson is Mitigating Fall Hazards

Hierarchy of controls (NIOSH 2016)

4pm, 6/27/2018	WEDA EXPO 2018 MANSON CONSTRUCTION CO.	5

OSHA Regulations

Employers are responsible to follow Occupation Safety and Health Administration (OSHA) guidelines and to determine the strength and structural integrity of walking/working surfaces for its employees (CFR 1926.501)

"walking/working surface (horizontal and vertical surface) with an unprotected side or edge which is 6 feet (1.8 m) or more above a lower level shall be protected from falling by the use of guardrail systems, safety net systems, or personal fall arrest systems" (CFR 1926.501)

In 2014, 70% of fatal falls where the height was known occurred at heights above 6 ft (1.8 m) (BLS 2016)

Personal Fall Arrest (PFA) Protection

PFA Design Requirements

- "...be rigged such that an employee can neither free fall more than 6 feet (1.8 m); nor contact any lower level" (CFR 1926.502)
- Maximum arresting force an employee can experience is 1,800 pounds (8,000 N) and deceleration distance is limited to 3.5 feet (1.06m) (CFR 1926.502)
- Lanyards must have a minimum break strength of 5,000 pounds (22.2 kN) (CFR 1926.502)
- Recovery plan must be in place

Non-Fatal Falls in the Construction Industry

Non-Fatal Falls in the Construction Industry

- Falls are a large percentage of total incidents requiring days away from work
- Regardless of total incidents the percentage of falls remains more or less the same
- Falls to a lower level make up more than 50% of total fall incidents requiring days away from work

Non-fatal incidents in the construction industry with falls highlighted, 2003-2016, BLS

Fatal Falls in the Construction Industry

Fatal Falls in the Construction Industry

- Falls are a large percentage of fatal incidents
- Falls to a lower level make up more than 90% of total fatal falls

Fatal falls in the construction industry, 2003-2016, BLS

, 2011-2017, BLS

50 -	_						
0	2010	2011	2012	2013 Y	2014 ears	2015	
Non-	fatal falls	curtailed	d by personal	fall arrest	t systems re	esulting in ir	njury,

Clearance Required

Fall height clearance requirement (EPP 2007)

4pm,	6/	27	/20)18

Clearance Required

CONSTRUCTION CO

Fall Energy = W * H

H – the Total height fallen

W – Weight of the Worker

Arrest Energy =
$$F_{PEA}(X_{PEA})$$

 ${\cal F}_{PEA}$ - Deployment Forces of the Personal energy absorber

 X_{PEA} - the extension (deployment length) of the personal energy absorber

$$H = h + X_{PEA}$$

h – free fall Height

$$X_{PEA} = \frac{W(h)}{F_{PEA} - W}$$

Required Clearance for a 220 lb (100 kg) worker using a 6 ft (1.8 m) lanyard for a free fall up to 6 ft (1.8 m)

R.M. White

Glenn Edwards – Fall Protection Locker

Glenn Edwards – Machinery House

Conclusions

Slips, Trips, and falls are a leading cause of fatalities and incidents requiring days away from work

OSHA PFA regulations can be difficult to meet dependent on the job site / location

Future Research

- There is a gap in information from in order to compare falls to the effectiveness of personal fall arrest systems
- Review available data more focused on dredging and marine construction

Through the use of the hierarchy of controls other solutions can be found to grant access to height

Deployment of Energy Absorbers

Arrest Energy

Equal to the force that stops the fall times the distance the force acts

Arrest Energy = $F_{PEA} * X_{PEA}$ F_{PEA} = Deployment force of the PEA X_{PEA} = the extension of the personal energy absorber

Maximum Free Fall Distance

$$h_{max} = \frac{(F_{avg} - W)x_{max}}{W}$$

 h_{max} - maximum free fall allowed, ft

 F_{avg} - average deployment force of PEA, lbs

W – Weight of worker, lbs

 x_{max} - maximum extension of PEA, ft

Fall Energy

Fall Energy = W * H

H – the Total height fallen

Arrest Energy = $F_{PEA}(X_{PEA})$

 F_{PEA} - Deployment Forces of the Personal energy absorber

 X_{PEA} - the extension (deployment length) of the personal energy absorber $H = h + X_{PEA}$

h – free fall Height

$$X_{PEA} = \frac{W(h)}{F_{PEA} - W}$$

NIOSH FACE STUDY

Fatal Falls in Construction, by Height						
Years	Less than 6 feet	6-15 feet	16-30 feet	More than 30 feet		
1982-1992	1.9%	13.9%	39.8%	44.4%		
1993-2003	2.3%	24.0%	43.3%	30.4%		
2004-2014	2.7%	48.7%	29.7%	18.9%		

Fatal Falls in Construction, by PFAS Status						
Years	Present, in use	Present, not in use	Not present	Unknown		
1982-1992	7.3%	22.0%	60.6%	10.1%		
1993-2003	4.0%	25.7%	49.1%	21.1%		
2004-2014	7.3%	14.6%	58.5%	19.5%		

Dong, 2017