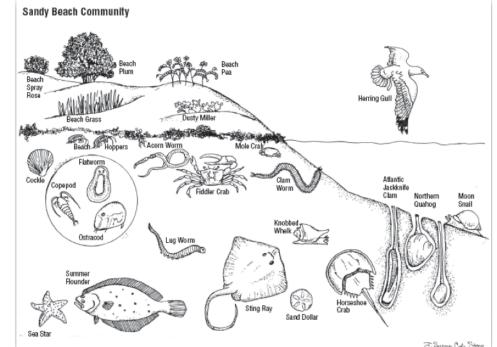
### Beach Stabilization and June Restoration in Progreso, Viscatan, Mexico







#### **Project Team Members**


- Frank A. Ocaña, Rodolfo Pinzón, Daniel Ceballos, and Leny F. Pinzón: MARCOST de México SA de CV, Mérida, Yucatán, México
- Amine Dahmani: SAMARCEL LLC, Storrs, CT, SESI Consulting Engineers, UCONN.
- Ismael Mariño: Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México





#### What is a Healthy Beach?

- Hundreds of species of plants and animals inhabit a healthy coastal environment.
- The coastline extends from the low tide beach to the grasslands and sand dunes.
- The primary tool in assessing the health of a beach is its ability to have a balanced erosion and accretion cycles and to support a variety of plants, invertebrates, birds and insects.







## SAMARCEL BEACH STABILIZATION TREATMENT PROCESS

- Natural biodegradable proprietary polysaccharide protein biopolymers, PPBs.
- PPB formulation, SandFirst (SF) designed through laboratory testing with sand from the site.
- When the PPB SF product is applied, the natural color and texture of the sand are not altered.

without SandFirst





with SandFirst







# Project Site in Progreso, Yucatan, Mexico



Figure 1. Location of the study area. T100-T400 represent the profiles measured in the Treatment zone and profiles O100-O200 and E100-E200 correspond to the West and East Control zones, respectively.





#### **APPLICATION AND EVALUATION**

- 85-m long treated beach. 1 kg of SF per meter was applied at low dosage (4 g/L) over a 6month period.
- Evaluated changes in Treatment zone and two Control zones (evolution of the coastline and sediment volumes) using 136 profiles and a linear regression analysis of the data.
- Evaluated the changes in sediment volumes for a section of the profile corresponding to 30 meters (approximately 10 m of dry beach and 20 m of submerged beach) bounded between the levels +1.0m to -1.5m was selected.
- Determined if there were differences in the sediment balance between Treatment and Controls. An analysis of variance was also performed.



### **Treatment Application**













June 23, 2016







#### **Dune Restoration**



Reclaimed windblown sand







Native plant species placement, sand fence installation and application of the PPB SandFirst for dune stabilization







September 6, 2016



August 20, 2016



Bathymetry- Sept. 10, 2016

MarCost





Sea turtle, Sept. 10, 2016



Application - Sept. 12, 2016



October 18, 2016



After a storm, Oct. 31, 2016 MarCost





November 16, 2016



February 4, 2017

Control West - Nov. 16, 2016

Control West- February 4, 2017

**MarCost** 



#### **Evolution of the Coastline**

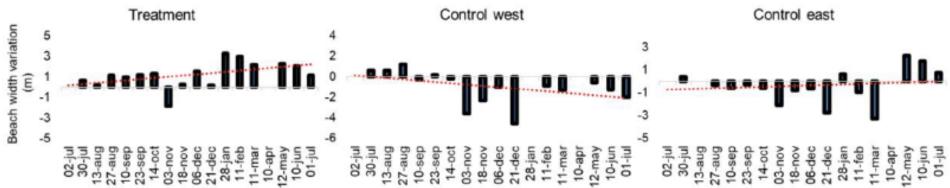



Figure 5. Time series of the coastline in the Treatment zone and the Control zones







#### **Sand Volume Variations**

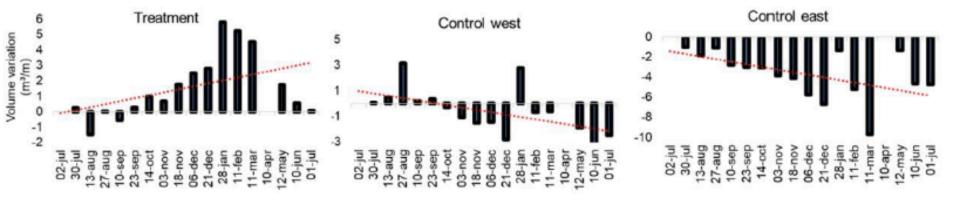



Figure 7. Average variation of the sand volume, and tendency (red line) in the Treatment zone and in the Control zones









March 11, 2017

Control West- March 11, 2017

Control East- March 11, 2017

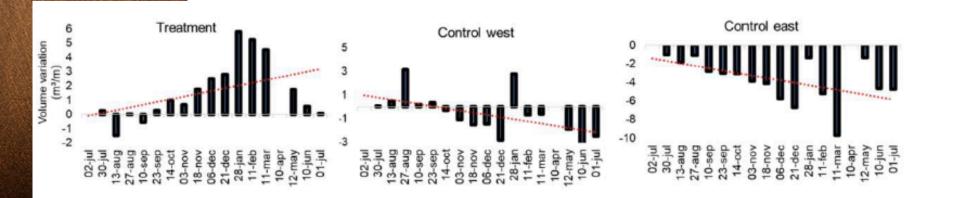



Figure 7. Average variation of the sand volume, and tendency (red line) in the Treatment zone and in the Control zones









Major Storm: June 10, 2017

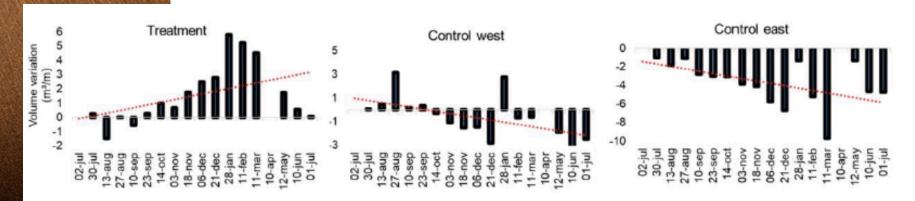
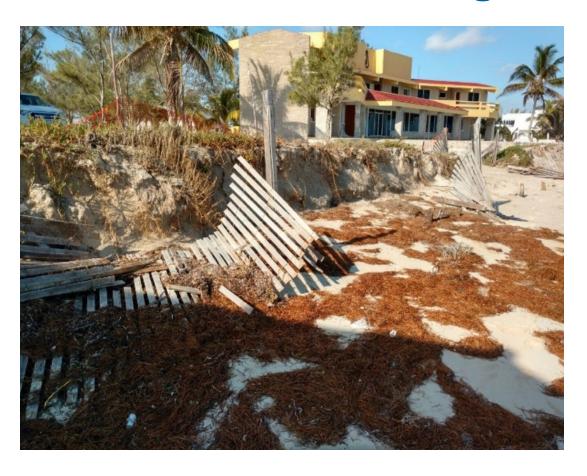




Figure 7. Average variation of the sand volume, and tendency (red line) in the Treatment zone and in the Control zones





#### **Dune Condition Following Storm**



A severe storm affected the Yucatan coast on May 4<sup>th</sup>, 2017. The dune demonstrated its importance by preventing an inundation of the premises.







February 26, 2018



April 23, 2018





#### **Project Results**

- In the Treatment zone, the sediment balance (erosion/accretion rate) was stable between the supralittoral and sublittoral areas (0.06 m³/m), while in the Control zones it had an average negative balance of -4.04 m³/m.
- The coastline in the Treatment zone shows a tendency to expand seaward. The Controls regressed.
- Our findings suggests that the treatment is a suitable method for increasing beach resilience and may be used to complement beach renourishment projects.
- The sand dune restoration was successful. Dune vegetation was enhanced by the PPB treatment.





#### **Environmental Benefits**

- The project increases energy efficiency by making renourishment projects more effective through enhanced sand retention and dune restoration.
- The project created a carbon sink through the restoration of the beach dune by reclaiming windblown sand and planting native species.
- The project enhanced beach resilience by increasing beach width and yielding a positive net sediment balance.





#### **Environmental Benefits**

- Restoration of the dune created new habitat (275 m²) that provided protection to some invertebrate species.
- The PPB treatment and sand dune and fence design/location did not impede the nesting of sea turtles as three successful nestings and hatchings were observed on the beach during the project.



#### Thank You!

Dr. Amine Dahmani maminedahmani@gmail.com ad@sesi.org

Dr. Frank A. Ocaña franko@marcost.com

