

Phase 1B Esquimalt Graving Dock Waterlot Dredging Residuals Predictions and Performance

-	Public Works and
	Government Services
	Canada

Travaux publics et Services gouvernementaux Canada

Dan Berlin, Anchor QEA

W EDA Dredging Summit and Expo 2017 June 26 – 29, 2017

Presentation Overview

- Background
 - Esquimalt Graving Dock (EGD) remediation overview
 - Dredging residuals
- Comparison of residuals predictions and performance
 - Undisturbed residuals
 - Generated residuals
 - Contingency measures
 - Redredging
 - Residuals management placement

Site Description and Background

DND: Department of National Defence EGD: Esquimalt Graving Dock

Phase 1B EGD Waterlot Dredging Residuals Predictions and Performance Dredging Summit & Expo '17

Site Description and Background (cont.)

Active Shipyard/Graving Dock Facility

• More than 50 vessel calls per year

Phase 1A – Under- Pier Erosion Protection System

 Sheetpile wall prevents resuspension and transport of contaminated under-jetty sediment into Phase 1B area

• Constructed November 2012 to April 2013

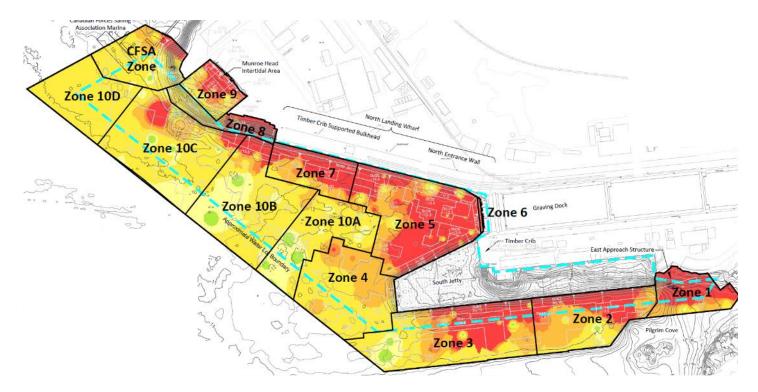
Phase 1A – Under- Pier Erosion Protection System (cont.)

Phase 1B: Open-Water Dredging

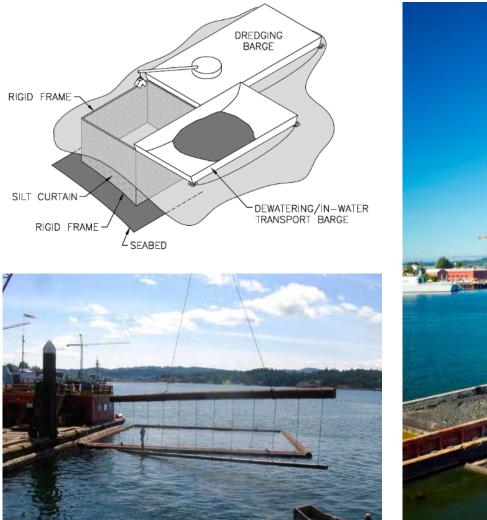
- Dredging and disposal
 145,600 cubic meters (m³)
- In-water slope armoring
 22,800 m³
- Residuals management
 cover placement
 - 45,000 m³
- Structure demolition and temporary relocations
- Construction June 2013 to
 March 2014

Phases 1C and 2

- Phase 1C Habitat Compensation
 - Offsets impacts of alteration and isolation of under-pier habitat
 - Construction of new intertidal marsh fish habitat
- Phase 2 Under-Pier Remediation
 - 36,500 m³ of contaminated sediment removal
 - October 2015 through December 2016


Key Project Objectives

- Remove maximum contamination practicable
 - Reduce federal financial liability and establish baseline
 - Reduce risks to human health and the environment
 - Meet federal and provincial standards
- Schedule
 - Minimize disturbance to operations
- Ensure high level of certainty in project outcome

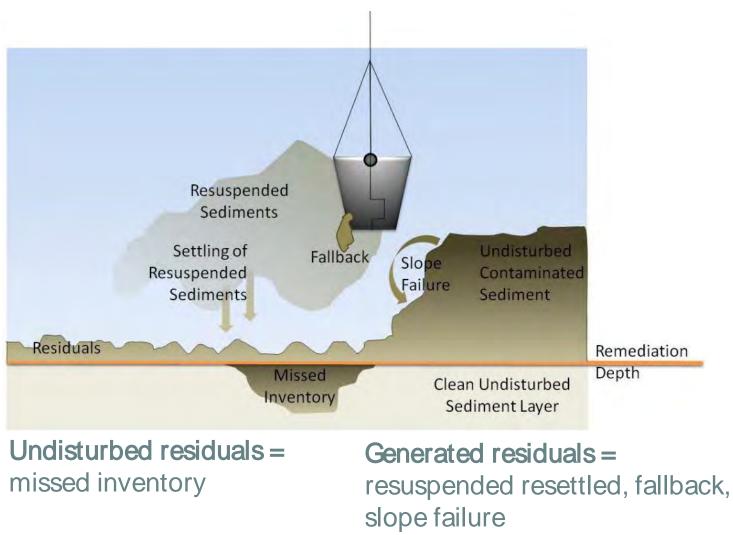

Remedial Dredge Design

- Construction sequencing to remove "hotter" contamination areas first
- Operational considerations

Silt Curtain

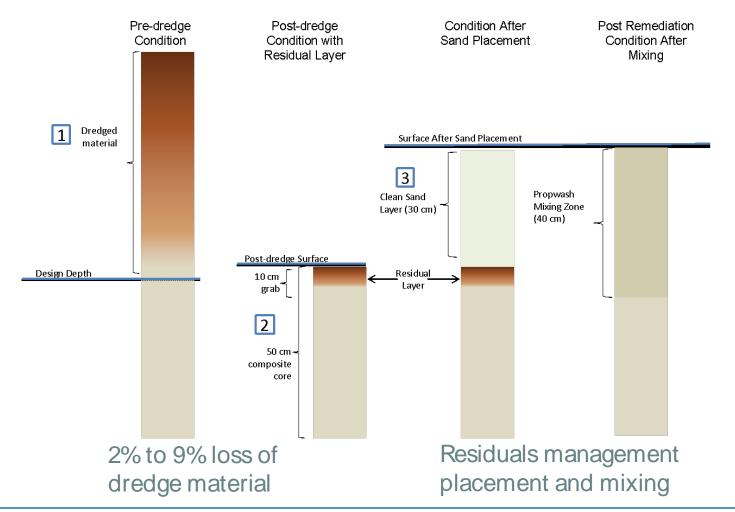
Phase 1B EGD Waterlot Dredging Residuals Predictions and Performance Dredging Summit & Expo '17

Dredging Residuals Conceptual Model and Design Predictions



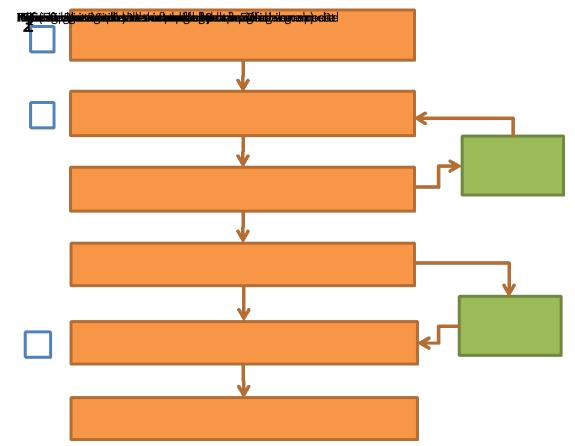
Undisturbed and generated residuals

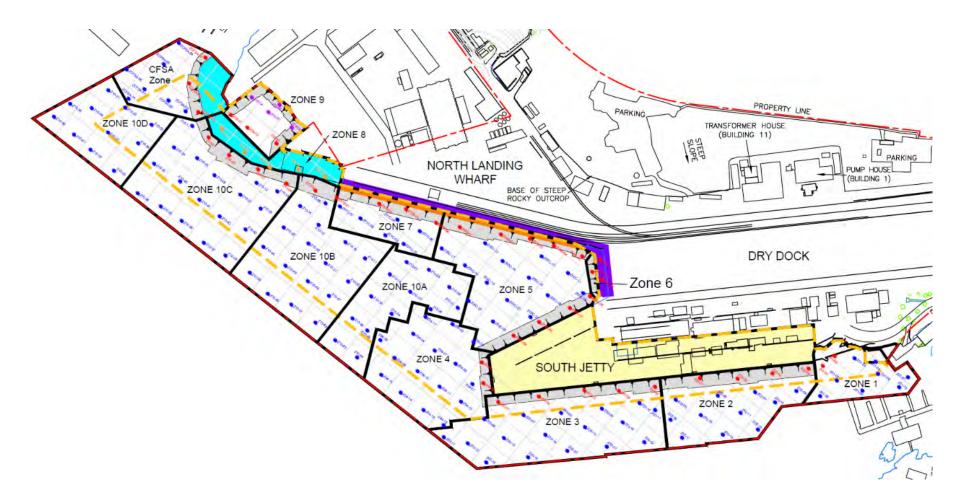
Dredging Residuals Defined


Prediction of Undisturbed Residuals With Geostatistical Modeling

Removal Scenario	Removal Volume (m ³)	Confidence Level
Contaminated Neatline (no OD)	71,250	50%
Contaminated Neatline +0.3 m OD	98,444	70 %
Contaminated Neatline +0.5 m OD	116,573	85%
Dredge Prism Design (no OD)	117,336	90%
Dredge Prism Design +0.3 m OD*	149,630	94%
Dredge Prism Design +0.5 m OD	162,658	99%
Notes: * Selected design criteria m: meter m ³ : cubic meter OD: overdu	redge	

Phase 1B EGD Waterlot Dredging Residuals Predictions and Performance Dredging Summit & Expo '17

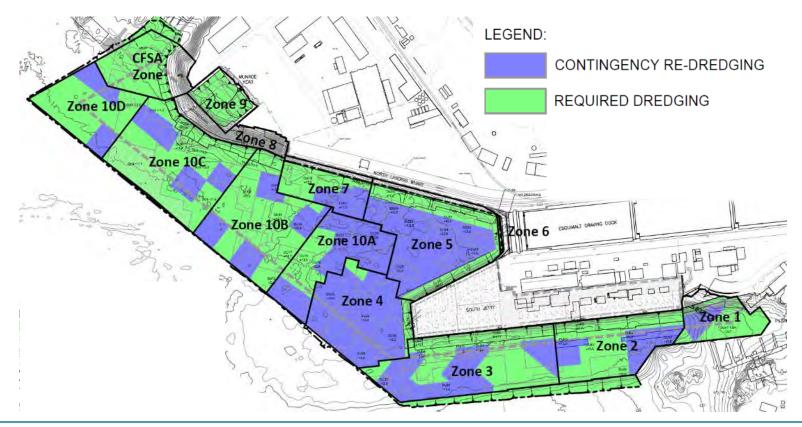

Prediction of Generated Residuals with Mass Balance Approach


Development of Residuals Management Approach

- Confirmational sampling
- Contingency redredging
- Residuals management cover (RMC)

Confirmation Sampling Grid

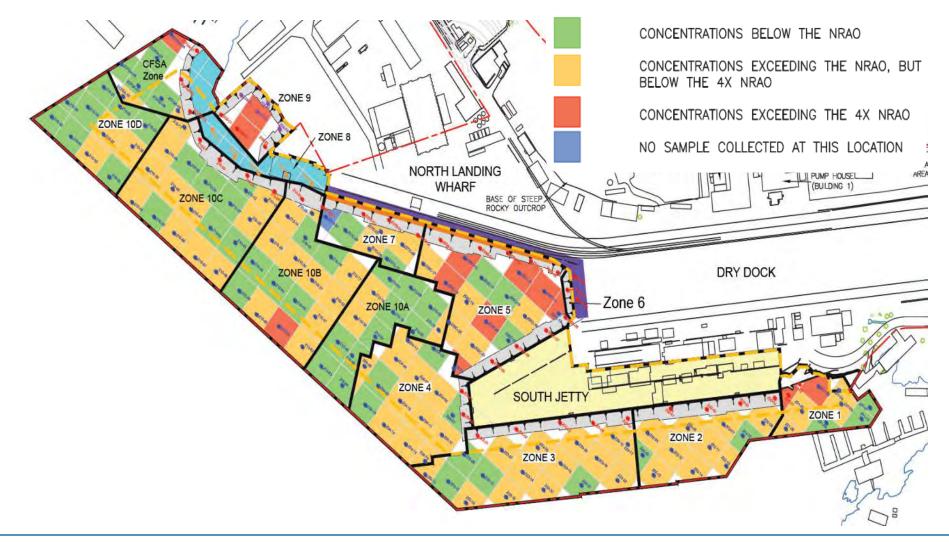
Project Performance for Residuals



- Predicted versus actual
 - Undisturbed residuals
 - Generated residuals
- Effectiveness of residuals management

Undisturbed Residuals

- 41% redredging
 - 31% due to undisturbed residuals
 - 10% due to high levels of generated residuals



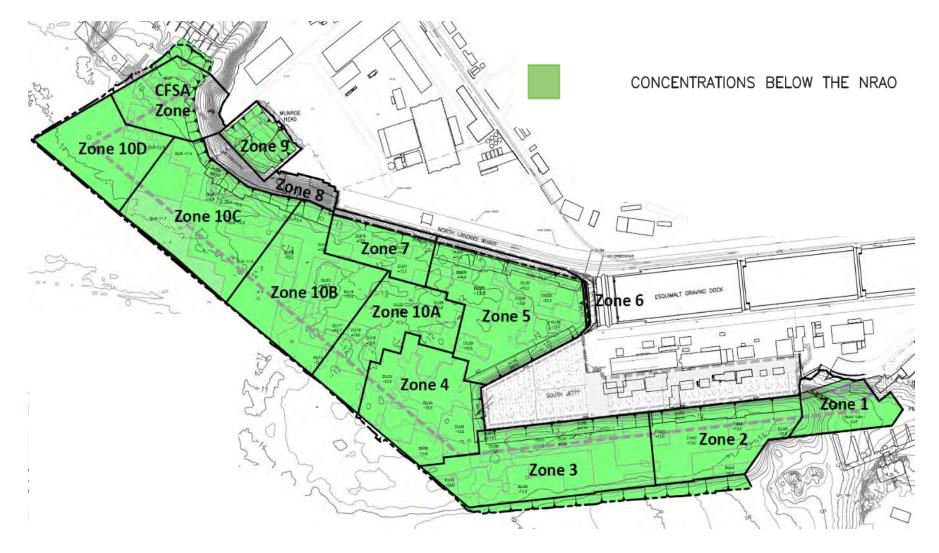
Undisturbed Residuals More than Predicted

- Review ed potential reasons for greater undisturbed
 residuals
 - Contaminant depth
 - Contaminant concentration
 - Distance from design cores
 - Bathymetric elevation
 - Contaminant of concern driver
- Most likely due to local variation in historical dredging elevations encountered
 - Higher density post-dredge sampling

Generated Residuals

Measured Generated Residuals

Measured Surface Sediment Concentrations Following Dredging (mg/kg)									
Item	tPAH	tPCB	As	Cd	Cu	Pb	Hg	Zn	Average
Average Concentration	3.25	0.29	15.2	1.4	87	55	1.0	136	
Method 1: Linear Interpolation	11.5%	4.9%	4.6%	5.6%	9.7%	3.2%	6.1%	7.5%	6.6%
Method 2: Contaminant Concentration	6.7%	4.0%	3.9%	4.4%	5.4%	3.3%	4.2%	4.8%	4.6%


Notes:

As: arsenic Cd: cadmium Cu: copper Hg: mercury mg/kg: milligrams per kilogram Pb: lead tPAH: total polycyclic aromatic hydrocarbon tPCB: total polychlorinated biphenyl Zn: zinc

• Predicted percent loss between 2% and 9%, with best estimate of 5%

Residuals Management Cover

Residuals Management Cover Effectiveness

Analysis of Surface Sediment Concentrations Following RMC Placement (mg/kg)									
Item	tPAH	tPCB	As	Cd	Cu	Pb	Hg	Zn	Average
Percent Residuals Resuspension and Resettling during RMC Placement	1.7%	4.7%	0%	7.3%	1.5%	0.6%	2.5%	1.4%	2.5%
Percent Increase in Concentration from Year 0 to Year 1	26%	4.7%	16%	- 7.1%	11%	5.3%	13%	2.6%	9.0%

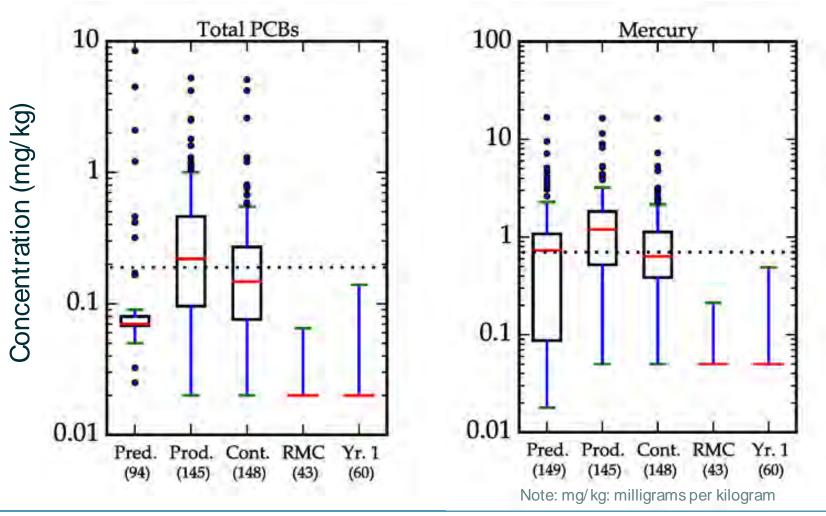
Notes:

As: arsenic Cd: cadmium Cu: copper Hg: mercury mg/kg: milligrams per kilogram Pb: lead tPAH: total polycyclic aromatic hydrocarbon tPCB: total polychlorinated biphenyl Zn: zinc

 Based on imported sand material, post-dredge surface sediment, and post-sand placement concentrations

Residuals Management Cover Compared to Redredging

Comparison of Surface Sediment Concentrations Before and After Contingency Residuals Management Actions (mg/kg)


Item	tPAH	tPCB	As	Cd	Cu	Pb	Hg	Zn	Average
Contingency Redredging									
Percent Reduction in Concentration	69%	57%	38%	7%	58%	65%	65%	45%	50%
Residuals Management Cover									
Percent Reduction in Concentration	98%	86%	71%	86%	80%	95%	92%	64%	84%
N L + F +									

Notes:

As: arsenic Cd: cadmium Cu: copper Hg: mercury mg/kg: milligrams per kilogram Pb: lead tPAH: total polycyclic aromatic hydrocarbon tPCB: total polychlorinated biphenyl Zn: zinc

Overview of Concentrations During Project Phases

Phase 1B EGD Waterlot Dredging Residuals Predictions and Performance Dredging Summit & Expo '17

Conclusions

- Benefit of geostatistical tools, such as contaminated neatline and confidence level analysis, for remediation dredge design
 - Density of design-level sampling and post-dredge sampling
- Contingencies for missed inventory and residuals redredging key to schedule and budget
- 2 to 9% loss is generally appropriate for mechanical dredging
- RMC placement reduces surface sediment concentrations more effectively than redredging

Questions

• Dan Berlin, dberlin@anchorqea.com

