Powering Dredges – Session 7C Thursday May 16, 2016

Legislation & Innovation in the Lifecycle Consideration of Dredging Industry Power Solutions

Ben Evans, Industry Solutions Ryan Darnell, Large Power Systems

Introduction

Legislation – Innovation cycle

Policy Development
 Regulatory Development
 Product Development

Current and future regulations for 300 bkW and >1000 bkW diesel exhaust solutions

Engine Emissions from Diesel

Diesel Engine Innovation

- > HP Fuel injection
- Turbocharging
- > EGR
- Particulate filter
- > Oxidation catalyst

SCR
JUN

<u>Reduces</u>	<u>Increases</u>	<u>Benefits</u>
PM	NO _x	Economy
PM	NO _x	Power
NO _x	PM	-
PM	-	-
CO/HC	-	-
NO _x	-	Economy

Utility vs Lifecycle Value

UTILITY

LIFE CYCLE

Upfront Costs - The Tip of the Iceberg

Owning / Capital Costs

- CAPEX (Total Installed Costs)
- RV at replacement (applicable to repower)

Operating Costs

- Energy or Total Fluid Consumption -TFC (Diesel, DEF, LNG)
- Lube Oil Consumption
- Preventative Maintenance (Coolant, filters, setting lash, parts & labor)
- Planned Overhauls & Repairs (parts & labor)

TCO Scenario 1: Small Inland Suction Dredge

Vessel Type: 130ft long, ~50ft suction depth

Engine Power: 310-340 bkW (1 high spd engine)

WODCON XXI

TCO Analysis Inputs & Assumptions

- Used Caterpillar engine TCO tool EVA™ (Engine Value Analysis) for comparison
- U.S. Based Repower Scenario: Tier 2 Marine or Tier 3 Non-Road to Tier 3 Marine or Tier 4F Non-Road
- 15-yr life cycle, 2750 hrs/yr
- 56% engine load factor
- \$2.50/gallon diesel fuel
- \$1.80/gallon DEF (diesel exhaust fluid)
- \$10/gallon engine lube oil
- \$100/hr labor rate for service/repairs
- 3% year over year escalation on diesel
 & lube oil, 1.5% on DEF, parts & labor

TCO Scenario 1: Small Inland Suction Dredge

TCO Scenario 2: Medium Trailing Suction Hopper Dredge

- Vessel Type: 100m long, ~45m dredging depth
- 5000 m³ capacity hopper volume
- Engine Power: 5420 bkW (2 medium spd engines)

TCO Analysis Inputs & Assumptions

- Used Caterpillar engine TCO tool EVA™ (Engine Value Analysis) for comparison
- IMO Flagged Repower Scenario: IMO II to IMO III medium spd engines
- 20-yr life cycle, 4000 hrs/yr
- 64% engine load factor
- \$2.25/gallon diesel fuel
- \$1.10/gallon DEF (diesel exhaust fluid)
- \$11/gallon engine lube oil
 - \$100/hr labor rate for service/repairs
- 3% year over year escalation on diesel & lube oil, 1.5% on DEF, parts & labor

TCO Scenario 2: Medium Trailing Suction Hopper Dredge

Closing Remarks

- Emissions legislation landscape for dredging industry power solutions can be complex and challenging to navigate
- Engine innovation also evolves with emissions legislation to avoid customer value erosion
- Important to precisely model lifecycle costs of engine solution alternatives against unique business and productivity demands
- Ultimate win-win scenario of cleaner running engines and decreased TCO is actually possible

