CORPS IMPLEMENTATION OF NAUTICAL DEPTH IN CHANNELS WITH FLUID MUD

ERDC Engineer Research and Development Center

Timothy Welp, Dennis Webb and Keith Martin ERDC Steve Reid and Herb Bullock Mobile District Mike Sullivan, Chris Colombo and Andrew Oakman New Orleans District

US Army Corps of Engineers.

Outline

- What is fluid mud?
- Fluid mud hydro surveying considerations
- What is nautical bottom/depth and what's needed to implement?
- Corps past/present/future implementation activities

Definition of Fluid Mud

"Fluid mud is a high concentration aqueous suspension of fine-grained sediment in which settling is substantially hindered by the proximity of sediment grains and flocs, but which has not formed an inter-connected matrix of bonds strong enough to eliminate the potential for mobility, leading to a persistent suspension."

McAnally et al. 2007

ERDC

What is Fluid Mud?

Innovative solutions for a safer, better world

BUILDING STRONG®

Fluid Mud Mobility

- Tidal currents and river flows can move the "upper portions" of the fluid mud around.
- Deep draft vessel pressure wave and propeller wash can also move/modify fluid mud.

ERDC

Innovative solutions for a safer, better world

BUILDING STRONG®

Problem Statement

Why Is It A Problem?

Sounding pole, lead line, and acoustic echo sounding will generally not correlate with one another, or give consistent readings from one time to the next when the same type of instrument is used in fluid mud (Hydro EM).

Measurement ambiguity has hindered optimization of Corps management of channels with fluid mud.

DEPTH MEASUREMENT VARIATIONS IN UNCONSOLIDATED OR IRREGULAR BOTTOMS

Source: Kirby and Parker 1978

BUILDING STRONG_®

Innovative solutions for a safer, better world

Nautical Bottom

Definiton PIANC-IAPH 1997: "the level where physical characteristics of the bottom reach a critical limit beyond which contact with a ship's keel causes either damage or unacceptable effects on controllability and manoeuvrability"

Nautical Bottom Approach Requires:

- practical fluid mud criterion & critical value
- practical, continuous survey method
- minimum underkeel clearance value

knowledge about ship behaviour ERDC

Practical Fluid Mud Criterion & Critical Value Density

Country	Port	Criterion Critical Limit Density (g/cm ³)
The Netherlands	Rotterdam	1.2
Thailand	Bangkok	1.2
Surinam	Paramaribo	1.2
Belgium	Zeebrugge	1.2
China	Yangtze	1.2
China	Liang yungang	1.25 - 1.3
China	Tianjing xingang	1.2 - 1.3
UK	Avonmouth	1.2
France	Dunkirk	1.2
France	Bordeaux	1.2
France	Nantes - Saint Nazaire	1.2
French Guyana	Cayenne	1.2
UK	Bristol	1.2

Innovative solutions for a safer, better world

Practical Fluid Mud Criterion & Critical Value Yield Stress

BUILDING ST

better world

BUILDING STRONG®

Practical Continuous Survey Method

Innovative solutions for a safer, better world

Gulfport Ship Channel, Mississippi

BUILDING STRONG®

Practical Continuous Survey Method

Densitune Density Probe

BUILDING STRONG®

SILAS

Practical Continuous Survey Method

SILAS SURVEY GULF PORT DIGITAL RECORDING OF ODOM ECHOTRACK MK III 24 kHz FEQUENCY

Innovative solutions for a safer, better world

Fluid Mud Field Drop 10

Innovative solutions for a safer, better world

Atchafalaya (Louisiana) Bar Channel

Vicksburg Mississippi Densitune Testing

Vicksburg Mississippi Densitune Testing

Depth Above Bottom	Ball Valve Sample Density	Densitune Density	Relative Difference %
40 cm	1.008	1.022	1.2
30 cm	1.256	1.319	5.0
20 cm	1.284	1.361	6.0
10 cm	1.289	1.362	5.6
			ERDO

Innovative solutions for a safer, better world

New Orleans District Hydro Survey Rheotune & SILAS

BUILDING STRONG_®

Depth 1: 23.0

Depth 2: 23.3

Mobile District Hydro Survey SILAS & Rheotune

Nautical Bottom

Definiton PIANC-IAPH 1997: "the level where physical characteristics of the bottom reach a critical limit beyond which contact with a ship's keel causes either damage or unacceptable effects on controllability and manoeuvrability"

Nautical Bottom Approach Requires:

- practical fluid mud criterion & critical value
- practical, continuous survey method
- minimum underkeel clearance value

knowledge about ship behaviour ERDC

Knowledge of Ship Behavior

- Observe ship behavior relative to density/yield stress horizons
- Develop Calcasieu Bar Channel hydrodynamic model for ERDC ship simulator w/o fluid mud effects.
- Modify ship simulator with Ghent University/Flemish Hydraulics Institute fluid mud/ship maneuverability hydraulic coefficients.
- Have Calcasieu Pilots "drive" simulator with differing fluid mud conditions.
- Achieve a common understanding of nautical depth.

ERDC

Calcasieu Bar Channel Speed Reductions Reported by Bar Pilots

Lutocline and Nautical Depth

Date	Draft I (ft)	Reduction (knots)
10/16/2010	37.5	1.2
12/18/2010	39.3	2.2
12/18/2010	33	0
12/26/2010	35.5	1.5
2/1/2011	40	1.8
5/4/2011	38	2
5/5/2011	39.5	3.2
5/12/2011	35.3	3.3
6/9/2011	38	3.2
Average	37.3	2.04
<u>35'+ draft</u>	37.9	2.30

Several vessels over 35' in draft showed a consistent reduction in speed with constant RPM from buoys 30-38.

ERDC

BUILDING STRONG®

Source: Dr. Marc Vantorre 2005

Dr. Marc Vantorre

Towing tank for maneuvers in shallow water co-operation Flanders Hydraulics Laboratory & Belgium Ghent University, Belgium

BUILDING STRONG_®

ERDC Ship Simulator

Innovative solutions for a safer, better world

BUILDING STRONG®

Emden Germany "Sediment Conditioning"

Atchafalaya Bar Channel Bed-leveler (Modified) Sediment Conditioning Demo

(b)

ovative solutions for a safer, better world

(a)

Corps Nautical Depth Implementation Hydrographic Surveying Engineer Manual

US Army Corps of Engineers

ENGINEERING AND DESIGN

Hydrographic Surveying

http://www.publications.usace.army.mil/USACEPublications/EngineerManuals.aspx ?udt_43544_param_page=4

Innovative solutions for a safer, better world

Corps Nautical Depth Implementation Hydrographic Surveying Engineer Manual

Figure P-16. Rheocable Method towed array and deck unit.

nnovative solutions for a safer, better world

Figure P-14. GraviProbe Kit.

Corps Nautical Depth Implementation

Engineering Technical Letter? Engineering Regulation?

BUILDING STRONG_®

QUESTIONS?

BUILDING STRONG®