Innovative simulation tools for turbidity management

Boudewijn Decrop and Mark Bollen

WODCON XXI, Miami, June 14th, 2016

Introduction

Objectives of the developments

Different types of sediment spills

Requirements for (operational) plume dispersion simulations

CFD near-field models

Development of parameterised near-field models

Implementation in 3D tidal flow models

Operational turbidity forecasting

Introduction

- Environmental management
- Fate of turbidity plumes
- Large-scale dispersion simulations
- Source terms needed
- Only visible at water surface
- → Near-field behaviour below surface?
- → 3D, near-field plume simulations

Objectives

Objectives of recent developments in plume dispersion modelling

General

- Increase accuracy of scenario turbidity predictions (tender phase + operational)
- Decrease probability of project shutdown due to turbidity threshold violations

Specific

- Improve near-field models for overflow plumes (CFD)
- Develop fast but accurate parameterisations for overflow spills
- Develop simulation tools for all other spills
- Improve reliability of operational turbidity forecasting
- Flexible framework for Pro-Active Adaptive Management of spills

Objectives of recent developments in plume dispersion modelling

•

Specific

- Improve near-field models for overflow plumes (CFD)
- Develop fast but accurate parameterisations for overflow spills
- Improve reliability of operational turbidity forecasting

Different types of sediment spills

Types of sediment spills taken into account

- Overflow (TSHD, barges)
- Draghead (TSHD)
- Propeller wash (TSHD, self-propelled barges with DP)
- Cutterhead (CSD)
- Bucket loss (Backhoe, Grab dredge)
- Reclamation area runoff
- Open-water placement
- Placement using spreader pontoon

Introduction

Objectives of the developments

Different types of sediment spills

Requirements for (operational) plume dispersion simulations

CFD near-field models

Development of parameterised near-field models

Implementation in 3D tidal flow models

Operational turbidity forecasting

- Far-field model:
 - Regional model or satellite-based altimetry (TPXO)
 - Local flow model

- Near-field models for dispersion of specific type of spills:
 - Overflow (with/without green valve)
 - Sidecasting
 - Containment bund runoff
 - Propeller wash

- Spill parameterisations (based on near-field models)
- Soil model project site
- Equipment characteristics
- Planning of foreseen dredging activities

• Far-field model:

- Regional model or satellite-based altimetry (TPXO)
- Local flow model

- Near-field models for dispersion of specific type of spills:
 - Overflow (with/without green valve)
 - Sidecasting
 - Containment bund runoff
 - Propeller wash

- Spill parameterisations (near-field models)
- Soil model project site
- Equipment characteristics
- Planning of foreseen dredging activities

Far-field (tidal) models at continental shelf scale:

- Large-scale tidal propagation models (in-house IMDC, 1000's of km, in 2D)
- Very efficient due to unstructured grids (1 month in +/- 1h CPU time)

Far-field models at local estuary/coast/port scale:

- Local flow models (10-100 km, usually in 3D)
- → At present: usually unstructured grids, focussed on area of interest
- Detailed calibration of tides and flow velocity

- Far-field model:
 - Regional model or satellite-based altimetry (TPXO)
 - Local flow model

- Near-field models (CFD): of specific type of spills:
 - Overflow (with/without green valve)
 - Sidecasting
 - Containment bund runoff
 - Propeller wash

- **Spill parameterisations** (near-field models)
- Soil model project site
- Equipment characteristics
- Planning of foreseen dredging activities

Near-field models for dispersion of specific type of spills: WHY?

- Physics in large-scale models not suitable (e.g. hydrostatic assumption, etc.)
- Grid discretisation in large-scale models not detailed enough (for CPU time reasons)

Near-field models for dispersion of:

- Overflow (with/without green valve)
- Sidecasting
- Containment bund runoff
- Propeller wash

Spill as percentage of production for:

- Draghead loss (TSHD)
- Cutterhead loss (CSD)
- Bucket loss (Backhoe, Grab dredge)
- Open-water placement
- Placement using spreader pontoon

Introduction

Objectives of the developments

Different types of sediment spills

Requirements for (operational) plume dispersion simulations

CFD near-field models

Development of parameterised near-field models

Implementation in 3D tidal flow models

Operational turbidity forecasting

Near-field model overflow plumes

Next step: validate upscaling to real-life scale

Model matches Field Measurements ?

Real-scale model

- 3D CFD
- 3 phases: water, sediment, air bubbles
- Resolves large turbulent motions (LES)
- Full-size TSHD
- Propellers included (actuator disk)
- Dynamic air bubble transport model:
 - Lagrangian,
 - Forces: drag, virtual mass, grad(p),

35.000

17.500

70.00 (m)

52.50

Coalescence

5-Jul-16 / WODCON XXI / slide 28

Real-scale model

CFD simulation result

Real-scale model

Model matches Field Measurements ?

Results Validation CFD

Validation Case 1:

- H=16m ; D=2m; W_0 =1.9 m/s; U_{∞} =1.5 m/s, C_0 =55 g/l
- Field measurements: SiltProfiler (vertical profiles of ssc)
- CFD model: CPU time = 25 hours at 32 CPU's

Results Validation CFD

Validation Case1: Vertical profiles

- Measurement carried out at < 200 m for near-field validation
- Compared with time-averaged model results

Model matches Field Measurements ?

Influence of air bubbles

- Environmental valve: air bubbles -90% (Saremi, 2014)
- Perform simulations with/without air flow rate reduction
- But: efficiency of the valve is function of ambient conditions! (Decrop *et al.*, 2015, J. Environ. Eng 141 (12))

Relative velocity sea water - ship

\rightarrow sediment in surface plume <u>x 10</u>

Overflow position Applications: Influence factors Ship Design Simplified Model Simplified Model

Overflow at aft: plume has more time to descend

Ship design: rectangular overflow shaft

Applications: Influence factors Ship Design Simplified Model

plume sediment concentration

Introduction

Objectives of the developments

Different types of sediment spills

Requirements for (operational) plume dispersion simulations

CFD near-field models

Development of parameterised near-field models

Implementation in 3D tidal flow models

Operational turbidity forecasting

Parameter model overflow plumes

Motivation CFD model has high CPU cost, not practical in some cases

Find a simple model that is:

- Much faster
- Almost as accurate

Parameter model = combination of

- Analytical plume solutions
- Parameter fits on data of +/- 100 CFD model runs

A model with output:

- In suitable form for far-field models input
- \rightarrow Vertical profile of sediment flux behind ship

Parameter model overflow plumes

Applications: Influence factors Ship Design Simplified Model

- >100 CFD runs, with variation of:
 - Current velocity
 - Sailing speed
 - Sediment concentration
 - Overflow diameter, position
 - Air bubble concentration
 - → For 'Model Training'
- Model Validation: against extra dataset CFD results
- 90% has R²>0.5
- Valid for standard cases, for specific cases still CFD needed

Introduction

Objectives of the developments

Different types of sediment spills

Requirements for (operational) plume dispersion simulations

CFD near-field models

Development of parameterised near-field models

Implementation in 3D tidal flow models

Operational turbidity forecasting

Implementation in far-field models

For overflow:

- Hopper model for sediment content in overflow discharge (Hjelmager et al., 2014)
- Fast parameter model for near-field overflow plume dispersion (< 1 sec.)
- Programmed inside far-field modelling software \rightarrow real-time evolution of overflow flux
- Distribution of sediment sources is varying with:
 - Current velocity and direction
 - Sailing speed
 - Sediment Concentration, % fines
 - Overflow diameter and position

Implementation in far-field models

In tender/planning phase:

- Include all other expected sediment spills on the site:
 - Reclamation runoff
 - Bucket loss
 - Draghead
 - ..
- Define evolution in time of equipment position, spill rate (kg/s), near-field distribution
- Implement time series of sediment sources in 3D far-field model
- Simulate different dredging works scenario cases
- Select work strategy with minimum turbidity impact at receptors

Introduction

Objectives of the developments

Different types of sediment spills

Requirements for (operational) plume dispersion simulations

CFD near-field models

Development of parameterised near-field models

Implementation in 3D tidal flow models

Operational turbidity forecasting

Implementation in far-field models

Real-time plume forecasting

- In operational phase
- Simulate, Evaluate, Adapt

Pro-active Adaptive Management

Pro-active Adaptive Management (PAM)

Conclusions

- New generation of efficient far-field models
- Recent developments in CFD for near-field models
- More accurate plume dispersion simulations:
 - Reduces risk of inaccurate assessment in tender phase
 - Enhances real-time plume dispersion forecasting in operational phase
- Overall: Reducing risk of turbidity threshold violations

Questions?

Setup: Test case 'Vertical plume'

- Geometry:
 - Vertical plume as a first test case for the CFD model
- Mesh:
 - Unstructured tet mesh
 - 'Inflation layers' near walls (pipe)
- Mesh 'Adaptation':
 - 1. RANS simulation on relatively coarse mesh
 - 2. Refinement where gradients / SSC significant
 - 3. RANS on refined mesh
 - 4. LES

Setup: Test case 'Vertical plume'

- Results
 - Self-similarity for z/D > 8
 - Comparison with experiments
 - Good accuracy time-averaged W(r) and C(r)

Decrop, B. et al. (2015). New methods for ADV measurements of turbulent sediment fluxes – Application to a fine sediment plume. Journal of Hydraulic Research 53 (3), p 317-331,

Setup: Test case 'Vertical plume'

Results

- Reynolds stresses accurate: peak value, peak location
- Turbulent fluctuations C: radial profile correct

Decrop, B. *et al.* (2015). New methods for ADV measurements of turbulent sediment fluxes – Application to a fine sediment plume. *Journal of Hydraulic Research 53* (3), p 317-331,

Goal of the experiments:

- Insights in sediment <u>plume behaviour</u>
- Produce <u>data set</u> to compare with model results
- Preliminary estimate of <u>influence factors</u>:
 - Air bubbles
 - Ship hull

• velocity ratio λ

Lab-scale Model

- Navier-Stokes eq's for the mixture
- Models:
 - Multiphase: mixture model (with drift flux term, slip velocity, drag)

Lab EXPERIMENTS Lab-scale MODEL

- Turbulence: Large-Eddy Simulation (LES)
 - SGS model: Dynamic Smagorinsky
 - \rightarrow each (x,y,z,t): v_t , D_t and Sc_t
- Phases mixture model:
 - Liquid phase: fresh water
 - Sediment: spherical, d=4 μm
 - Stokes number << 1
 - Volume concentration 0.2 to 4%
- Inflow boundary: spectral synthesizer (vortex mimicking)
- Water surface: rigid lid

Real-scale

MODEL

Real-sca

Setup : Plume in crossflow

• Mesh, initial:

Setup : Plume in crossflow

- Mesh, refined
- Optimised number of cells (~10⁶)

Based on C (from RANS run)

Results

Qualitatively : well-known turbulent structures are present:

2. Counter-rotating vortex pair + double C-peak

Validation case : Bubble plume in crossflow

Case of Zhang et al. (2013)

- Upward bubbly jet (20 vol.% air)
- Tracer in jet fluid
- Centerline tracer plume
- Centerline bubble plume

• LES model with three phases:

- Water
- Sediment (tracer)
- Air bubbles:
 - Initial diameter: 1.7 mm
 - Collision model
 - \rightarrow Coalescence \rightarrow bubble size distribution
- Influence bubbles on sediment plume: ok
- Separation bubble plume: ok

Separating bubble plume

Quantitatively:

3. Turbulent Kinetic Energy k

Decrop, B. et al. (2015). Large-Eddy Simulations of turbidity plumes in crossflow. European Journal of Mechanics - B/Fluids (53), p68-84,

Overview Model development

Next step: validate upscaling to real-life size

Upscaling to <u>realistic scale</u>: CFD model with <u>lab geometry</u>

Upscaling LES model to prototype scale

- 1. Take CFD model lab scale
- Scale grid to large scale (similarity laws buoyant jets)
- 3. CFD simulation
- **4.** Validation, based on:
 - Trajectories in similarity coordinates must coincide with lab scale
 - TKE resolved > 80%, for LES completeness (Pope, 2004)

Results Validation CFD

- Density current + Surface plume (air bubbles, propellers)
- 5% of sediments released to 'far-field' plume
- Hypothesis confirmed?

near-bed density current

Measurements

Determination of sediment concentration:

Sampling inside the overflow (to impose in model runs)

 Measurements and samples in the dredging plume

Measurements

SiltProfiler:

- High-res. vertical profiler (free-fall,100 Hz)
- Wireless connection when above water (BlueTooth)
- CTD
- 3-step turbidity sensor (0 50,000 mg/l)
- Design avoids seabed disturbance

Real-scale MODEL

Lab-scale MODEL

Lab EXPERIMENTS

Real-scale MEASUREMEN

Measurements

SiltProfiler results

→Consistent profile type:

- 1. Diluted surface plume: 10-200 mg/l
- 2. Near-bed layer, 2-6m thick: 200-1500 mg/l

Transect sailing (near-field, 100-500m from stern)

Across the plume

Validation prototype scale CFD (Case 2)

<u>Case 2</u>: Surface plume (OBS measurements)

- In situ measurements: lumped, crossing the plume
- Model output: at centreline -

 \rightarrow C_{max,insitu} should be = C_{centreline,model}

Results Validation CFD (Site nr 2)

Validation Case 2:

• <u>H=39m</u>; <u>D=1.1m</u>; Overflow <u>near stern</u>

→ In contradiction to hypothesis: 100% of sediment released to far-field plume

Environmental valve efficiency

- 2x 26 cases, with/without valve
- Valve efficiency = function of surface plume sediment flux with/without valve

Environmental valve efficiency

 Valve efficiency turns out to be related to a combination of length scales and a Froude number

Environmental valve efficiency

- Decomposition in constructional and operational efficiency
- Operation has more impact on efficiency than construction

influence diameter and overflow position

influence sailing speed and sediment concentration

Influence on surface turbidity

Number of overflows

 \rightarrow sediment fraction in surface plume much larger for low C₀

Parameter model

- Motivation: CFD model has high CPU cost, not practical in some cases
- Find a simple model that is:
 - 1. Much faster
 - 2. Almost as accurate
- >A model with output:
 - In suitable form for far-field models input
 - \rightarrow Vertical profile of sediment flux behind ship
- Parameter model = combination of
 - Analytical plume solutions
 - Parameter fits on data of +/- 100 CFD model runs

10

Parameter model

O(100) CFD runs, with variation of:

- Current velocity
- Sailing speed
- Sediment concentration
- Overflow diameter, position
- Air bubble concentration
- → For 'Model Training'
- Model Validation: against extra dataset CFD results
- 90% has R²>0.5
- Valid for standard cases, for specific cases still CFD needed

Overview Model development

Influence of air bubbles

- Environmental valve: air bubbles -90% (Saremi, 2014)
- Perform simulations with/without air flow rate reduction

Relative velocity sea water - ship

 \rightarrow sediment in surface plume <u>x 10</u>

Overview Model development

Overflow position *Simplified Model *Influence factors * Ship Design

- Overflow at stern: plume mixed by propellers
- Overflow at aft: plume has more time to descend

Overflow shaft extension

- Studied earlier by de Wit *et al.* (2015)
- C at surface reduced with factor up to 10
- Still surface plume because of rising air bubbles

Rectangular overflow shaft

Applications: *Simplified Model *Influence factors * Ship Design

→ Potentially 50% reduction of sediment concentration

Overview Model development

Future research and applications

Overflow design (CFD model)

- Detailed study efficiency of:
 - Shaft extension
 - Rectangular overflow
- Influence of:
 - Lateral position overflow
 - Number of overflows
- Inclined overflow exit?
- Overflow via draghead jetting

Parameter model

- Real-time plume forecasting
- Tender-phase dredging strategy

