

Fuel Saving Solutions

Basel Yousef Manish Jangir

Fuel Prices Rising

World crude oil prices

Sources: Bloomberg , Thomson Reuters , Published by: U.S. Energy Information Administration , Updated: Monthly | Last Updated: 9/28/2012

Other industries savings

- Hybrid Drives Systems
- New Energy: Solar, Wind, Wave
- Isolation of heated or cooled spaces
- Use lighter material
- Planning of consumption
- And much more

• **Dredge Pumps** are more efficient

• Cutter heads improved significantly

• **Drag heads** are active machines

• **Drives** are producing more power than ever

But one component remains the same:

Discharge Pipe Coupling (Ball Joint)

2

Consumption of discharge pipes

- Most power is used to pump mixture
- Discharge pipe length increases each year
- More bends are added in pipe lines
- This creates a need of flexible coupling
- Flexible couplings are OLD and NOT EFFICIENT

Consumption of discharge pipes

Consumption of discharge pipes

- Estimation of Power Consumption
 - For **CSD 40% 70%**
 - For **TSHD 30% 60%**

Current ball join

U.S. Patent Dec. 7, 1976

Sheet 2 of 2

3,995,889

One of the first types of ball joints

Ball Joints still in Production

Problems with Ball Joints

- Rust (Tilting Resistance)
- More **force** to tilt
- Power consumption

Rust on Ball Joint

No flexibility in pipe connection

Problems with Ball Joints

- Acceleration = Pressure Drop
- Pressure Drop = More Power

Problems with Ball Joints

- Two major problems:
 - 1. RUST

2. BLOCKAGE

Possible Solutions (Rust)

Bearing Ball Joint

Possible Solutions (Rust)

Possible Solutions (Rust)

Bearing Ball Joint benefits:

- No Grease
- Flexible
- Longer life time
- Replaceable bearings
- Environment friendly [©]
- Easy dismantling

Concave ball liner

Concave ball liner CFD Simulation

MAX TILTED POSITION

Concave ball liner CFD Simulation

SYMMETRICAL POSITION

CONVENTIONAL

CONCAVE LINER

Possible Solutions (Blockage) Benefits:

- Less pressure drop
- Replaceable liner
- Less wear
- Longer life cycle
- Environment friendly

Possible savings

- Pressure drop saving 40-50%
- According to calculations made with CFD
- In-house and using Simerics and HyperWorks

Fuel saving 10-15% according to total pipe resistance

Spine Hose

Safety

- Many safety issues
- Ball Joints are getting bigger
- Difficult to handle
- Rough environment

Problem of implementation

- Joints bought as price/weight
- Old available stocks
- Workers not aware about the savings
- Trying new technology is time consuming
- The old system is known and proven

Recommendations

- Selection on long term use
- Cost calculation of fuel consumption differences
- Modify existing used stock

THANK YOU

QUESTIONS AND DISCUSSIONS
