Fundação Universidade Federal do Rio Grande Departamento de Oceanografia Laboratório de Ecologia de Invertebrados Bentônicos

BENTHIC COMMUNITY EVALUATION UNDER DREDGING STRESS CONDITION IN THE HARBOR OF RIO GRANDE

Pinotti, Raphael Mathias; Corradi, Celso Elias & Bemvenuti, Carlos Emílio

INTRODUCTION

Benthic macrofauna and its relation with the bottom layer

Alter the sediment characteristics

Dredgingoperations can...

Rise the water turbity, prejudicing the plankton and the suspension feeders

Ressuspend contaminants

They can be used in ambient monitoring better than other organisms due to their low mobility

INTRODUCTION

Studies concerning dredges impact – Different effects Wildish & Thomas (1985) – Harbor of Saint John (Canada) Marques *et al.* (1993) – Mondego estuary (Portugal) Quigley & Hall (1999) – Blyth estuary (NE - England) Kaplan *et al.* (1975); López-Jamar & Mejunto (1988) – Recovery Lewis *et al.* (2001) – Bayou Texar estuary (EUA)

Guerra-García et al. (2003) – Harbor of Ceuta (N - Africa)

Thus, the effects of these operations need to be evaluated case-to-case

INTRODUCTION

Harbor of Rio Grande

• License Operation given by the Brazilian Environmental Agency (IBAMA), since 1997

• Monitored parameters in order to maintain these license:

Water quality

Sediment quality

Geochemical analysis

Ecotoxicology tests

Mammal, fish and bird's diversity and abundance

Benthic community (which concerns the present study)

OBJECTIVE

Evaluate the benthic community from the Rio Grande's harbor channel, analyzing the possible effects caused by the dredge operations accomplished in the year 2000, and also their recovery 1 year after the end of these operations

MATERIAL AND METHODS

Dredging operations during the year 2000 removed about 2.330.000 m³ of sediment (mostly silt and clay)

Winter (dredged area: from #1 to #3)

Spring (from #4 to #8)

BIOTIC AND ABIOTIC SAMPLES

5 seasonal cruises: Summer, Autumn, Winter and Spring 2000 plus Winter 2001 Salinity measured at each site

3 biological samples per site

van Veen grab (0.08 m²) Nylon sieve (500 μm mesh size) Stereomicroscope identification

DATA ANALYSIS

Benthic macroinvertebrate density expressed in Ind.(m²)⁻¹

Ordination analysis (Multi Dimensional Scaling – MDS) and CLUSTER hierarchical dendrogram: log (X+1) transformed data and Bray-Curtis similarity matrix

Kruskal – Wallis' Non-Parametric variance analysis (Unifactorial / p < 0.05)

Analysis of Similarity (ANOSIM) and Similarity Perceptual (SIMPER) tests

STATISTICA[®] 6.0, PRIMER[®] 5.4.2 e BioEstat[®] 3.0 software

Salinity

SM = summer 2000; AT = autumn 2000; WT = winter 2000; SP = spring 2000; WT 1 = winter 2001

	SM	AT	WT	SP	WT 1
# CONTROL SITE	35	2	0	0	20
# 1	27	4	0	0	24
# 2	29	2	5	0	18
# 3	28	2	0	0	23
# 4	25	3	0	0	27
# 5	28	2	0	0	25
# 6	35	2	0	0	25
# 7	35	2	0	0	27
# 8	35	2	0	0	25
	p < 0.05				

Macrofaunal Density

Species' number

Some macrozobenthic species and their dominance perceptual

Heleobia australis (Gastropod)98.23%

Heteromastus similis (Polychaete) 0.66%

Nephtys fluviatilis (Polychaete) 0.14%

Anachis isabellei (Gastropod) 0.12%

Kalliapseudes schubartii (Tanaid) 0.06%

Both summer and autumn 2000 presented high density and diversity values (of marine species mainly), followed by an abrupt diminution of these community attributes in the subsequent seasons (winter and spring)

The changes in the estuarine salinity (zero values) can be responsible for these community reductions, specially concerning the gastropod *H. australis* (the dominant specie)

The winter 2001, saltier than the former winter and spring, also affected the community structure, favoring the marine species more than the estuarine ones

Seasonal MDS

All seasons were different (p = 0.01 / R = 0.738)

Dredge MDS – Winter 2000

Dredge MDS – Spring 2000

p = 29.4% / R = 0.075

CLUSTER, ANOSIM and SIMPER Analysis – Before, After and Post Dredging

DREDGE OPERATIONS ANOSIM			SIMPER (Bray-Curtis dissimilarity)
	p (%)	R	····· -·· (-····) · ····· · · · · · · · · · · · ·
GLOBAL	0.1	0.575	
BEFORE x AFTER	0.1	0.645	Heteromastus similis (P - 9.74%); Sigambra grubei (P - 7.40%); Anachis isabellei (G - 5.48%)
BEFORE x POST DREDGE	0.1	0.905	Sigambra grubei (P - 9.56%); Heleobia australis (G - 8.42%); Heteromastus similis (P - 8.20%)
AFTER x POST DREDGE	2.1	0.184	Heleobia australis (G - 10.88%); Heteromastus similis (P - 9.18%); Anachis isabellei (G - 7.86%)

Dredge effects

The multivariate analysis (both MDS and CLUSTER) indicated no dredge effects upon the macrozoobenthic association's structure

The differences found concerning the dredging periods (before, after and post dredges) were due to the presence or absence of the main specie *H. australis* and the marine species (*S. grubei* and *A. isabellei*)

The estuarine salinity seems to play an important rule about the density and diversity of the benthic community in the harbor of Rio Grande, stronger than that caused by the sediment disturbance and removal (the dredge operations main effect)

However, a continuous monitoring is necessary including a long period without dredges, in order to accurate the interpretations about the seasonal and natural behavior of the benthic community and their response to the dredges

ACKNOWLEDGEMENTS

FURG

OBATORIO DE ECA

Porto do Rio Grande

SUPRG

Thanks for your attention!

raphael.oceano@gmail.com