

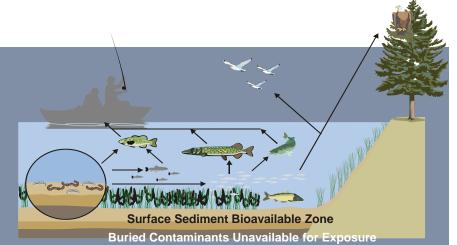
A Risk Management Case Study: Selecting an Effective Riskbased Remedial Alternative for Contaminated Sediments

Jennifer Holder, PhD ARCADIS BBL

Presentation Outline

- Overview of risk management process
- Sediment management tool box
 - Investigation
 - Remediation
- Case Study
 - Former Naval Base

Overview of Risk Management Process



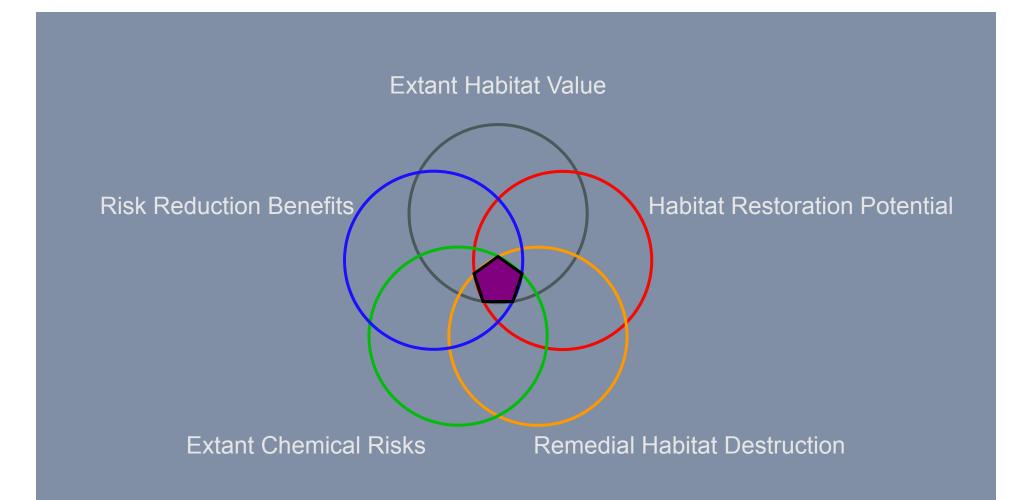
Risk Management Process

- Goal: Identify, evaluate, select and implement actions to reduce risk in a scientifically sound and cost-effective manner
- Sources of information
 - risk assessment results
 - regulatory requirements
 - public values
 - economic analysis
- Complex process can be additionally challenging when current land use and potential redevelopment plans are addressed

Impacts of Contaminated Sediments

- Human health impacts from eating fish/ shellfish, wading, and swimming
- Ecological impacts on wildlife and aquatic species
- Loss of recreational fishing, swimming and boating opportunities

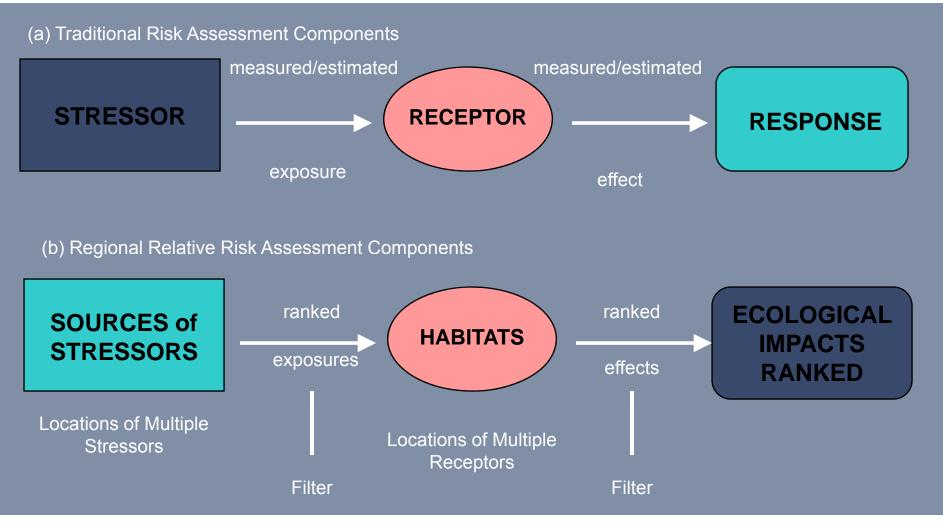
- Loss of traditional cultural practices by indigenous peoples and others
- Economic effects of loss of fisheries, on development, reduction in property values, property transferability or tourism
- Increased costs of drinking water treatment, other effects on drinking water, and other water uses
- Loss or increased cost of commercial navigation


Key principles for managing contaminated sediments

- 1. Control sources early
- 2. Conceptual site model that considers sediment stability
- 3. Identify risks to human health and the environment iterative approach in a risk-based framework
- 4. Evaluate assumptions and uncertainties with site characterization data and models
- 5. Avoid poorly conceived, one-size-fits-all solutions: select site-specific, project-specific, and sediment-specific risk management approaches that will achieve risk-based goals
- 6. Ensure that sediment cleanup levels are clearly tied to risk management goals
- 7. Maximize the effectiveness of institutional controls and recognize their limitations
- 8. Design remedies to minimize short-term risks while achieving long-term protection
- 9. Monitor during and after sediment remediation to assess and document remedy effectiveness

Sediment Risk Management System

Sediment Management Tool Box


Best Practices - Site Assessments

- Determine nature and extent, assess mobility, and evaluate alternatives through a structured, tiered approach
- Identify exposure pathways, bioavailability, and sediment stability contaminated sediments might be buried today, but that does not mean they always will be
- Identify the sources of historical contamination and quantify any continuing sources. Characterize ambient conditions.
- Identify current and future potential risks based on reuse plans
- Collect data to evaluate the potential effectiveness of natural recovery, in-situ capping, sediment removal, and promising innovative technologies
- Provide a baseline of data that can be used to monitor remedy effectiveness in all appropriate media (generally sediment, water, and biota)

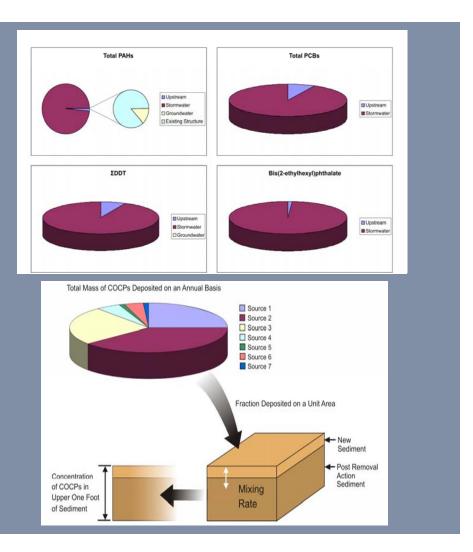
Comparison of Risk Assessment Paradigms (Landis 2005)

Best Practices – Remediation technologies

- Sediment remedy
 - Institutional controls: fishing advisories
 - Monitored natural recovery
 - Capping
 - Dredging
 - Confined disposal facility design
 - Stabilization, dewatering and treatment
- Source control

Source Control

- If uncontrolled external contaminant sources are not controlled, they can undermine the effectiveness of the remediation
- Identify and neutralize sources of recontamination to protect cleanup investments
- Define potential through data collection and recontamination modeling
- Stormwater is one of several potential recontamination sources



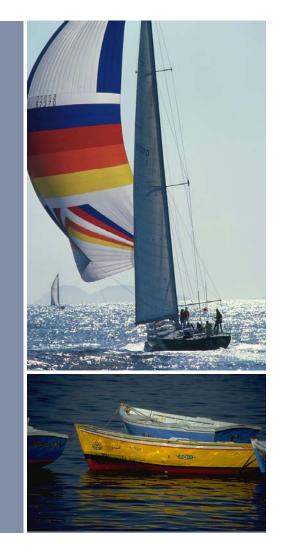
• If necessary, select and implement stormwater BMPs to prevent recontamination and monitor effectiveness of stormwater BMPs

Analysis of Recontamination or Natural Recovery

- Objective: to assess the potential for post-dredging or capping recontamination of sediment or for natural recovery
 - determine potential sources
 - collect data from sources
 - estimate mass loading rates
 - evaluate recontamination potential

Case Study: Former US Naval Base -Clear source and identified reuse

Site Characteristics and History

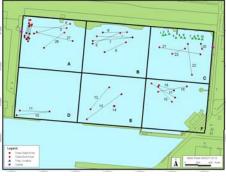

• History

- Constructed in 1930s by dredging a former tidal flat and used to dock seaplanes for repair
- From 1940 to 1975, received ≈ 300 million gallons of untreated industrial wastewater and stormwater
- Characteristics

- 18 to 20 feet deep
- Completely enclosed except for an 800 foot opening in the southern jetty/breakwater
- Southern boundary is an engineered seawall/jetty and filled pier; other boundaries are bulkhead sheetpile walls or engineered seawalls
- Protected from significant wind and tidal energy

Potential Future Site Uses

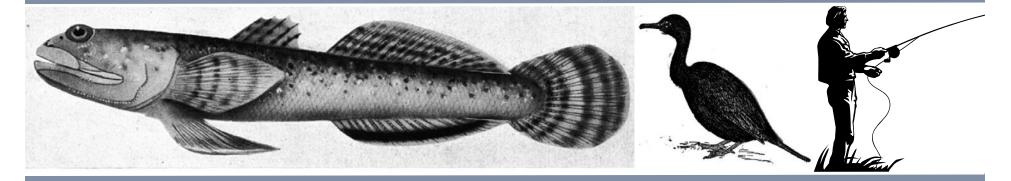
- Private and public boating (including boat clubs)
- Ferry service
- Yacht facilities (including deep draft vessels)
- Boat repair maintenance
- Dry storage
- Training facilities (yachting)


Sampling Design

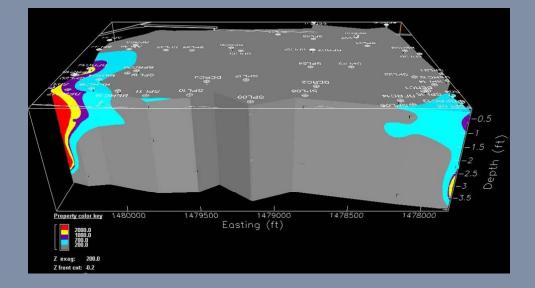
- Numerous investigations over 15-year period
 - Grab samples and sediment cores
 - Benthic flux sampling
 - Toxicity bioassays with both invertebrate and fish species
 - Bioaccumulation bioassays
 - Site-specific fish tissue collection

• Identification of potential sources

- Source control measures implemented
- Cleaning of storm sewers and stormwater prevention plan



Conclusions of the Investigation


- The primary areas of concern: northeast and northwest corners of lagoon where historical outfalls released waste water
- Low potential for impacts to benthic invertebrate community
- Potential risks to fish and birds from pesticides, PCBs and cadmium
- Potential risks to humans from ingestion of fish contaminated with PCBs

Areas with Remediation Goal Exceedances

- Potential risks concentrated in the northeast and northwest corners of the lagoon near outfalls
- Area of contamination is ≈ 8 acres (5 acres in NE corner and 3 acres in NW corner)
- Highest concentrations of chemicals no more than 2 to 4 feet below the sediment surface

Remedial Alternative Evaluation

- Preliminary Remedial Alternatives Considered
 - Alternative 1 (No action)
 - Alternative 2 (Monitored natural recovery)
 - Alternative 3 (Isolation capping using clean cap)
 - Alternative 4 (Thin-layer capping that also promotes biological activity and natural recovery processes)
 - Alternative 5 (Uniform dredging, dewatering, and upland disposal)
 - Alternative 6 (Focused dredging based on remedial goal exceedances, dewatering, and upland disposal)
 - Alternative 7 (Focused dredging with monitoring and ex-situ treatment and reuse)

Remedial Alternative Evaluation

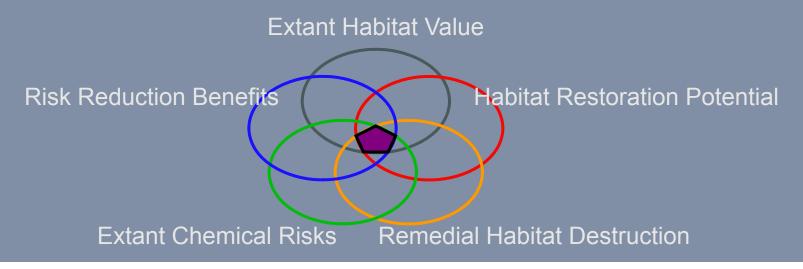
- Initial Evaluation Criteria
 - Evaluated with respect to three criteria:
 - Effectiveness
 - Short and long term effectiveness in providing protection of human health and the environment
 - Implementability
 - Technical and administrative feasibility, including ability to construct, reliably operate, and meet regulations until remedy is complete
 - Cost
 - Relative present worth costs accurate to +50 to -30% based on cost estimating
- Based on initial criteria, three remedial alternatives (3, 5 and 6) were retained and compared

Comparison of Alternatives

	Alternative	(3) Isolation Capping/Monitoring/ Institutional Controls	(5) Dredging/ Monitoring/Dewatering/ Upland Disposal at a Permitted Off-Site Waste Disposal Facility	(6) Focused Dredging/Monitoring/ Dewatering/Upland Disposal at a Permitted Off- Site Waste Disposal Facility
Inresnoid Criteria	Would Achieve Overall Protection of Human Health and the Environment	MODERATE	HIGH	MODERATE to HIGH
	Would Achieve Compliance with ARARs	HIGH	HIGH	HIGH
	Long-Term Effectiveness	MODERATE	HIGH	MODERATE to HIGH
Modifying Criteria	Reduction in Toxicity, Mobility, and Volume Through Treatment	LOW	MODERATE	LOW to MODERATE
	Short-Term Effectiveness	HIGH	MODERATE	MODERATE to HIGH
	Implementability	HIGH	HIGH	HIGH
	Cost	\$5.3 million	\$9 million	\$7.6 million

Selected Alternative

• Alternative 5: Dredging/monitoring/dewatering/upland disposal


- Dredge to 4 ft throughout remediation areas
- Construction quality control (water quality and post-dredge confirmation sampling using sediment cores and water depth)
- Dewatering
 - 3 to 4 ft high on-site drying beds
- Upland Disposal
 - Off-site disposal in a Class II Landfill
- Summary: Risk management process developed clear management objectives resulting in a final remedy that was the best balance of trade-offs. Allowed for a mutually acceptable approach after 20 years of investigation and debate.

EPA Superfund project manager said, "The best cleanup remedies come when all interested parties have a seat at the table and make decisions on the best approach to a site. The EPA is satisfied that the cleanup alternative for the Seaplane Lagoon will be protective of the bay and other aquatic resources."

Summary

- Risk-management strategy to investigate and to select remedial options for sediment sites allows:
 - Focused investigation and cost-effective solutions specific to site conditions and potential re-use
 - Avoids poorly conceived, one-size-fits-all solutions: selects site-specific, project-specific, and sediment-specific risk management approaches that will achieve risk-based goals
 - Minimizes the possibility that the "Cure will be worse than the illness"

