CAD Pit Design and Long-Term Risks for Contaminated Dredged Material at Piaçaguera Canal, Brazil

Thomas D. Borrowman

Research Civil Engineer Environmental Laboratory

US Army Corps of Engineers

Dredging and Disposal Plan for the Navigational Channel

- Hopper dredge, about 30 days of dredging and placement
- Various placement methods investigated in short-term risk study
- Contained aquatic disposal (CAD) in excavated pits within navigation channel by hopper bottom dump

US Army Corps of Engineers

Project Location

- Situated in the inner Santos estuary of Brazil, an area of high sedimentation and precipitation
- Navigation channel of Piaçaguera Canal serving the private Cubatão Harbor in the State of Sao Paulo, Brazil
 - -5.4 km long (2.4 km to be dredged)
 - **100 m wide**

US Army Corps of Engineers

Acknowledgements

- Work performed by The US Army Engineer Research and Development Center (ERDC), under a Cooperative Research and Development Agreement (CRADA) with Fundação de Estudos e Pesquisas Aquáticas (FUNDESPA), a contractor for Companhia Siderurgica Paulista (COSIPA)
- Co-authors
 - Paul R. Schroeder, Environmental Lab (EL)
 - Stephen A. Pranger (EL)

Guilherme Lotufo (EL)

US Army Corps of Engineers

ERDC Study Objectives

- Generate the best estimate of storage requirements for use in sizing the confined aquatic disposal (CAD) cells
- CAD pit must have sufficient volume for
 - Retention for settling
 - Densification for storage
 - Adequate clearance from erosive forces to reduce losses from contaminated dredged material
 - Adequate clearance from erosive forces to ensure cap stability
- Reduce the uncertainty of the prediction by using two methods of testing and analysis

US Army Corps of Engineers

Approach

- Laboratory testing
- Design modeling for short-term sizing
- Evaluation of long-term performance and risk management

US Army Corps of Engineers

Laboratory Testing for Short-Term Sizing Evaluation

US Army Corps of Engineers

Settling for Short-Term Placement Volume

- Standard Column Settling Tests
 - Flocculent settling test for TSS in water column as a function of time
 - Zone settling test for area / flow rate constraint
 - Compression settling test for storage needs

US Army Corps of Engineers

US Army Corps of Engineers

Standard Settling Results

Settling for Post-Placement Volume

- Incrementally Filled Tall Column Settling Test
 - Simulate 38 days of filling
 - Simulate storage for a deep CAD pit
 - Examine entrainment effects

US Army Corps of Engineers

Tall Column Settling Test

US Army Corps of Engineers

Double Click

Water remains black (TSS up to about 10 g/L) for three hours per meter of settling height. Then, TSS of 30 to 150 mg/L.

US Army Corps of Engineers

Height of Fill

of Engineers

Engineer Research & Development Center

Storage Concentration

Tall Column Settling Results

Settling Results and Conclusions

- Sediment is primarily fine-grained high plastic and highly compressible silt/clay with about 20% sand.
- Hindered settling occurs above 160 g/L. Zone settling velocities are quite slow and pose concerns for sizing and potential losses of solids during placement.
- Settling properties of dredged material and capping material are very similar.
- Suspended solids concentration under quiescent settling are below 40 mg/L initially, below 20 mg/L in 1 day, and below 10 mg/L in 7 days.

Tall column settling test provided very good data for storage needs.

US Army Corps of Engineers

Laboratory Long-Term Performance Evaluation

US Army Corps of Engineers

Consolidation Test Results

 $e = 7.724 P^{-0.1932}$

$K = 0.00000122 e^{4.374}$

In situ Material: Gray Sandy Clay (CH); 22% Sand; w = 144.5% (553 g/L)

US Army Corps of Engineers

Piaçaguera Canal CAD Pits

- Multiple cells excavated from bottom of existing navigation channel
- •4H : 1V side slopes
- 100 m top width
- Maximum depth of 25 m
- Maximum fill height of 10 m
- Cap thickness of up to 2 m

US Army Corps of Engineers

Location of CAD Cells

CAD cells will be placed in the lower dredging reach where the sediments are suitable for ocean disposal.

US Army Corps of Engineers

Modeling

US Army Corps of Engineers

Implications for Sizing

- Settling (Short-Term Placement Volume)
 - Modeling Using USACE SETTLE Model
 - Prediction of Settled Solids Concentration and Bulking
 - Prediction of Total Suspended Solids (TSS) Concentration at Disposal Site (20 to 30 mg/L after 12 to 24 hours of settling)
 - Predicts Slow Zone Settling Rate (about 0.5 m/day at 120 g/L). Typical Rates are 1 to 2 m/day.
 - Prediction of Minimum Cell Area (about 21 ha/m³/s)

of Engineers

Sizing

- Minimum cell area is about 200,000 sq m, given a width of 100 m, the minimum length of the CAD cell(s) is about 2 km
- If multiple cells are used, filling must cycle between cells
- Alternatives are to reduce the production rate by disposing only intermittently, to select a smaller dredge or to decrease slurry concentration

US Army Corps of Engineers

Required Storage Capacity

Storage Capacity Curve

US Army Corps of Engineers

Engineer Research & Development Center

Filling Curve

Implications for Sizing

Consolidation (Long-Term Placement Volume)

- Modeling Using USACE PSDDF Model
 - Short-term sizing needs controlled by permeability
 - Permeability measurements in consolidation testing lacks precision and accuracy needed for predicting short-term sizing needs
 - Permeability data can be calibrated using tall column settling test results for mid- and long-term predictions
 - Relatively small adjustments required for calibration

 Long-term volume will be about half of volume immediately after placement

US Army Corps of Engineers

Preliminary CAD Cell Design Conclusions

- Preliminary CAD cell design just meets area requirements
- Storage capacity provides 2 to 2.5 m of clearance for ship props, settling, and capping, about 0.5 m to 1 m less than expected
- Stretching disposal period would improve capacity

US Army Corps of Engineers

Testing Conclusions

- Tall column compression settling test provide the best basis for sizing deep CAD cells
- Tall column predicts greater compression settling as expected due to 5 times greater material thickness
- Permeability data in the consolidation modeling needed to be decreased by 50 percent to match tall column results
- Consolidation test data is imprecise for permeability due to rapid changes in short sample

US Army Corps of Engineers

Long-Term Risk

- Long term performance improved by consolidation, thereby increasing clearance for cap and providing for natural infilling of acceptable material
- Based on short-term risk evaluation, in the long-term,
 - Cap is reworked and mixed, but not lost
 - Mixing does not occur to a depth that compromises isolation of contaminated sediment

Short-term risk can be improved by controls

US Army Corps of Engineers

- Mechanical dredging and disposal would increase density of disposed material
 - Increased density would reduce TSS losses to water column due to less entrainment of water and greater settling rates
 - Increased density would reduce erosional losses
 - Increased density would reduce storage needs and CAD pit size

US Army Corps of Engineers

Controls

- Disposed at the bottom of the CAD cell
- Limit the height of dredged material fill
 - Slow rate of disposal; extend period of disposal
 - Increase size of CAD cell
 - Limit quantity of dredged material

US Army Corps of Engineers