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ABSTRACT 

The literature studies show that until now, the existing investigations on the cutting of densely compacted and 
saturated sand are involved only in the range of isotropic soil with regard to permeability. The permeability of sand 
is one of the most important parameters in saturated sand cutting. The properties of the isotropic soil that are 
responsible for the resistance to flow are independent of the direction. However, in many soil deposits the resistance 
to flow in the vertical direction is considerably larger than the resistance to horizontal flow, due to the presence of 
the layered structure in the soil, generated by its geological history. It is necessary to investigate the cutting of 
anisotropic densely compacted and saturated sand. 

This paper builds up a mathematical modeling of the cutting of anisotropic densely compacted and saturated sand 
and performs finite element analysis of saturated sand cutting with the ratio /h vk k =1, 2, 4, 6, 8, 10 of permeability 
of soil in the horizontal direction to that in the vertical direction, and with various shear angles ranging from 15 
degree to 35 degree. 

The results show the cutting forces required for anisotropic densely compacted and saturated sand will increase with 
the ratio /h vk k . The cutting force for a soil with /h vk k =10 is about 18 % larger than that of an isotropic sand 
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INTRODUCTION 

When the cutting of soil is investigated, the homogeneous soil has been almost all assumed in order to simplify the 
problems (Os, 1976 and 1987; Miedema, 1985, 1987). However, generally speaking, soil in the real world is 
anisotropic. What is the difference when the anisotropic soil is used instead of homogeneous soil? The cutting of 
saturated anisotropic soil is a very complicated subject because it has effects on the strength and permeability and 
other parameters of soil. However, dilatancy is more important in the cutting of saturated sand. In the paper the 
effects of anisotropic permeability of densely compacted and saturated sand on the cutting forces will be discussed, 
because pore water pressure plays a most important role in the cutting of densely compacted and saturated sand and 
permeability has strong effects on the change of the pore water pressure. 

MATHEMATICAL MODEL OF CUTTING OF ANISOTROPIC SATURATED SOIL 

The literature studies show that the investigations on the cutting of densely compacted and saturated sand are 
involved in the range of isotropic soil with regard to permeability. The properties of this type of the soil that are 
responsible for the resistance to flow are independent of the direction. However, in many soil deposits the resistance 
to flow in the vertical direction is considerably larger than the resistance to horizontal flow, due to the presence of a 
layered structure in the soil, generated by its geological history. Only the two-dimensional cutting of anisotropic soil 
is considered in this paper. 

For two-dimensional anisotropic soil, Darcy’s law can be expressed: 
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This matrix expresses the most general linear relationship between the specific discharge vector and the gradient of 
the pore pressure. The permeability matrix is a symmetric matrix, so there exist two mutually orthogonal directions, 
the so-called principal directions of permeability, in which the cross-components disappear.  When the soil is 
orthogonal, equation 1 becomes: 
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Physically speaking, this means that a gradient of the pore water pressure in one of these directions leads to a flow in 
the same direction. The soil to be cut consists of two orthogonal pore channels with different cross sections and with 
different resistances, see Figure 1. The principal directions coincide with the direction of the pore channels 

 

sand

pore channels

 
Figure 1.  Two-dimensional model 

If the pore channels in the x-direction are wider than those in the y-direction, the permeability xxk  will be greater 
than yyk . Now we calculate the values of permeability in another coordinate system ( , )ξ η  which rotates an angle α 

with the coordinate system ( , )x y . There is a relationship between these two coordinate systems: 
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A vector q with components   x yq and q can be decomposed into components   q and qξ η : 
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Substituting equation 1 into the matrix above, one obtains: 
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Substituting the equation above into equation 5, one obtains: 
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The specific charge , q qξ η  can also be written as: 
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From the above two equations, one obtains: 
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They are expanded as: 

2 2

2 2

cos sin cos 2
2 2

cos sin cos 2
2 2

( )sin cos sin 2
2

xx yy yy xx
xx yy

xx yy yy xx
yy xx

yy xx
yy xx

k k k k
k k k

k k k k
k k k

k k
k k k

ξξ

ηη

ξη

α α α

α α α

α α α

+ −
= + = −

+ −
= + = +

−
= − =

 (10) 

The equation above indicates when the soil is isotropic namely xxk  = yyk , or when the coordinate system ( , )ξ η  
coincides with coordinate system (x, y), kξη =0.  The equation above describes a general flow using the coordinate 
system ( ( , )ξ η . It shows that a gradient of pore water pressure in ξ  direction not only leads to a flow in its direction 
but also to a flow in η -direction. 

The channels in x-direction will physically transport much more water than the narrow channels in y-direction 
because xxk  is greater than yyk . In general the resultant flow will always have a tendency towards the most 
permeable direction. The anisotropic law should be of the form of equation 3. In engineering practice the orthogonal 
situation is usually acceptable to distinguish only between the permeability in vertical direction and the one in 
horizontal direction, assuming that this difference has been created during the geological process of deposition of the 
soil. It is assumed that the x, y directions of permeability are its principal directions. 
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In the cutting of saturated sand, storage equation is one of the basic equations, which is from Biot’s theory of 
consolidation (Biot, 1941). This equation expresses that volumetric deformations of the soil must be accompanied 
by a compression or expulsion of the pore water.  Storage equation of soil cutting is: 
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The volumetric strain rate /e t∂ ∂  can be expressed in the change of porosity, using the 
assumption that the soil particles are incompressible. 
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Substituting the equation above and equation 1 into equation 13, one obtains: 
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In continuous cutting process, it is convenient to introduce a moving coordinate system, with 

cx v tζ = −  (15) 

Where cv  is the velocity of the cutting blade. 

Equation 14 becomes: 
2 2 2

2 2

1 ( 2 )
1

c
yy y

w

vp p p nk k k
g y nyζζ ζρ ζ ζζ

∂ ∂ ∂ ∂
− + + =

∂ ∂ − ∂∂ ∂
 (16) 

For the saturated soil cutting, the soil failure is considered to occur in shear areas R, so that the following equations 
describe the cutting problem: 
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When coordinate system (x, y) is the principal coordinate system of the permeability, the equations above become: 
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Using the following relationships, one can make the dimensionless of the equation 18. 
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It can be rewritten as: 
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MODELING AND ANALYSES OF FEM 

Because the calculation formulae of the cutting forces for the anisotropic saturated soil are the same as those for 
isotropic saturated soil. Only the effects of the pore water pressure are considered because of the anisotropic 
permeability of the soil. Figure 2 is a FEM model of the cutting of anisotropic saturated soil. In the model, the 
permeability of the initial saturated soil is xxk =0.25 and /xx yyk k = 1, 2, 4, 6, 8, 10. The permeability of the cut soil in 
the rigid wedge is isotropic: max 1xx yyk k k= = = . The cutting angle of the blade is 60 degree; shearing angle β is 
respectively 15, 20, 25, 30 and 35 degrees. Ratio of the vertical height of the blade to the cutting depth is 3.  

The results of the calculations of dimensionless average pore pressures distributed both on the cutting blade (p-
blade) and on the shear surface (p-shear), and of horizontal-cutting forces for different soil with internal friction 
angles of 20 to 45 degrees are listed in table 1. Because the calculations are dimensionless, the following equation is 
valid: 
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Figure 2: FEM model of saturated sand cutting

47



Table 1: Results of FEM analyses of cutting of anisotropic  saturated soil 

Pore pressure Fh 
β  /xx yyk k  p-Blade p-shear ϕ =20º ϕ =25º ϕ =30º ϕ =35º ϕ =30º ϕ =45º 

 1 0.1600 0.3519 0.4035 0.5411 0.7107 0.9308 1.2359 1.6977 
 2 0.1724 0.3739 0.4290 0.5753 0.7556 0.9898 1.3143 1.8056 

15 4 0.1818 0.3905 0.4484 0.6013 0.7898 1.0347 1.3739 1.8875 
 6 0.1860 0.3981 0.4572 0.6131 0.8053 1.0550 1.4009 1.9247 
 8 0.1884 0.4026 0.4624 0.6201 0.8146 1.0671 1.4170 1.9468 
 10 0.1901 0.4057 0.4660 0.6249 0.8209 1.0754 1.4280 1.9619 
 1 0.1776 0.3834 0.3530 0.4813 0.6445 0.8646 1.1852 1.7080 
 2 0.1917 0.4088 0.3768 0.5137 0.6880 0.9230 1.2653 1.8236 

20 4 0.2023 0.4282 0.3949 0.5384 0.7210 0.9674 1.3263 1.9115 
 6 0.2071 0.4370 0.4031 0.5496 0.7361 0.9876 1.3540 1.9514 
 8 0.2100 0.4423 0.4080 0.5563 0.7451 0.9997 1.3706 1.9754 
 10 0.2119 0.4459 0.4114 0.5609 0.7512 1.0079 1.3819 1.9918 
 1 0.1852 0.4073 0.3247 0.4505 0.6161 0.8496 1.2115 1.8636 
 2 0.1998 0.4352 0.3473 0.4818 0.6590 0.9088 1.2961 1.9937 

25 4 0.2110 0.4565 0.3645 0.5057 0.6917 0.9539 1.3605 2.0929 
 6 0.2161 0.4662 0.3724 0.5167 0.7067 0.9746 1.3900 2.1383 
 8 0.2191 0.4721 0.3771 0.5233 0.7158 0.9871 1.4078 2.1657 
 10 0.2212 0.4762 0.3804 0.5278 0.7220 0.9957 1.4201 2.1847 
 1 0.1876 0.4272 0.3104 0.4389 0.6148 0.8764 1.3162 2.2320 
 2 0.2024 0.4569 0.3323 0.4699 0.6583 0.9385 1.4094 2.3902 

30 4 0.2136 0.4796 0.3491 0.4936 0.6916 0.9859 1.4808 2.5113 
 6 0.2188 0.4901 0.3569 0.5046 0.7070 1.0079 1.5137 2.5672 
 8 0.2220 0.4965 0.3616 0.5113 0.7163 1.0213 1.5339 2.6013 
 10 0.2241 0.5010 0.3649 0.5159 0.7229 1.0305 1.5478 2.6250 
 1 0.1880 0.4450 0.3068 0.4430 0.6385 0.9495 1.5340 3.0769 
 2 0.2027 0.4764 0.3287 0.4747 0.6843 1.0176 1.6440 3.2977 

35 4 0.2140 0.5006 0.3457 0.4992 0.7196 1.0701 1.7289 3.4681 
 6 0.2193 0.5119 0.3536 0.5106 0.7361 1.0946 1.7686 3.5477 
 8 0.2225 0.5189 0.3585 0.5177 0.7462 1.1097 1.7930 3.5968 
 10 0.2248 0.5238 0.3619 0.5226 0.7534 1.1203 1.8102 3.6311 

 
From table 1, we obtain the relationship curves between the dimensionless pore water pressures and various ratio of 
the horizontal component xxk  to vertical component yyk  of permeability of the initial soil. Figure 3a expresses the 
relationships between the pore pressures on the shear plane and on the cutting blade and the ratio of the components 

xxk  to component yyk  of the permeability at shear angles 25 degrees and at a cutting angle of 60 degree. Figure 3b 
express the relationships between the cutting force Fh and the ratio of the components xxk  to the component yyk  of 
the permeability for different soil with internal friction angles from 20 ~ 45 degrees at shear angles from 15 ~ 35 
degrees.  
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Figure 3.  Cutting forces  hF   vs   /xx yyk k    at  α=60 º,  β=25 º 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Ratio of cutting forces 1h hF F   vs  xx yyk k  at  α=60 ºFigure 5 

Figure 4 expresses the relationship between the ratio of the cutting force from the anisotropic soil to that from the 
isotropic soil and the ratio of the component xxk  to the component yyk  of the permeability of the soil. From this 
figure, when the ratio of the component xxk  to component yyk  of the permeability of the soil is less than 2, the error 
of using the calculation results from the isotropic models representing those from the anisotropic model is less than 
7 %. However as the anisotropic degree increases, the error will also increases. 

Figure 5 expresses the distribution of the excess pore water pressures for the model of the cutting of anisotropic soil 
while figure 6 expresses the distribution of the excess pore water pressures for the model of the cutting of isotropic 
soil. After comparing these two figures, it can be found that the distribution of excess pore water pressures for 
isotropic soil appears vertical ellipse while the distribution for anisotropic soil appears a flatter ellipse and that the 
values of the excess pore water pressures from the cutting model of anisotropic soil are higher than those from the 
cutting model of isotropic soil. These show that for anisotropic model pore water flows into shear zones mainly from 
horizontal direction during soil cutting, and that the resistance of pore water flowing into shear zones is larger than 
that of the isotropic model. 
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Figure 6: Distribution of the excess pore water pressures of anisotropic soil model 
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Figure 7: Distribution of the excess pore water pressures of isotropic soil model 
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CONCLUSIONS 

From the analyses above, the following conclusions can be made: 

In general speaking, the cutting forces will increase as the ratio of the component xxk  to component yyk  of the 
permeability of the soil. When this ration is less than 2, the error of using calculation results from isotropic soil 
models to represent those from anisotropic soil models is less than 7%. When this ration is 10, the error of using 
calculation results from isotropic soil models to represent those from anisotropic soil models is less than 20%. In 
general speaking, the models of the cutting of saturated homogeneous soil are precise enough for the practical 
situations as is concerned the permeability of the anisotropic soil. 

Because of anisotropic property of soil, during the cutting of densely compacted and saturated anisotropic soil, pore 
water flows into the shear zones mainly in the horizontally direction. 
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