Restoration of Lake Erie Seawall to Accommodate Climate Change

Matthew Power, Coastal Engineer

Outline

- Problem Definition
- Objective of project
- Development of 2D Reynolds Averaged Navier Stokes Volume of Fluid (RANS-VOF) model
- Spectral wave (SW) model
- Conclusions

Problem Definition

Damages to two Galveston-type seawalls caused by:

- Wave action along with cyclic lake level changes
- Undercutting of seawalls
- Ice loading
- Minimal repairs over design life

Problem Definition

- Concrete cracking & spalling
- Overtopping & flooding
- Erosion & debris

Project Objective

- Repair & restore 580 m of North and 460 m of South seawalls
- Raise seawalls to mitigate flooding
- Quantify volume of water overtopping seawall to inform stormwater modelling
- Assess the impact on neighboring properties due to raising and rehabilitating seawalls

Development of RANS-VOF (Mongoose) Model

- To determine the wave overtopping for various return period events
- To determine wave pressures and resulting forces on the seawalls
- To calculate the wave reflection coefficients of the existing and proposed seawalls for use in Spectral Wave model

	North Seawall			South Seawall		
Cases	Water	H _{m0}	T (c)	Water depth	H _{m0}	T (c)
	depth (m)	(m)	1 _p (S)	(m)	(m)	1 _p (S)
5-year	2.64	1.07	5.00	2.63	1.21	4.05
10-year	2.82	1.18	5.11	2.81	1.36	4.28
25-year	3.06	1.36	4.90	3.06	1.57	4.45
50-year	3.22	1.48	5.14	3.21	1.73	4.60

RANS-VOF Model: Wave Overtopping

Jacobs

RANS-VOF Model: Wave Overtopping

Results:

- Significantly reduced wave overtopping for proposed case
- Results in same ballpark as empirical method
- A new wave overtopping formula for Galveston-type walls was developed

Wave overtopping rates

Return	Existing Condition		Existing Condition		Future Condition	
Period	EurOtop		Mongoose Model		Mongoose Model	
	North	South	North	South	North	South
	Seawall	Seawall	Seawall	Seawall	Seawall	Seawall
	(m³/s/m)	(m³/s/m)	(m³/s/m)	(m³/s/m)	(m³/s/m)	(m³/s/m)
5-year	0.00191	0.00278	0.00004	0.00004	0	0
10-year	0.00361	0.00472	0.00081	0.00890	0	0
25-year	0.01194	0.01638	0.05580	0.02740	0.00260	0.00153
50-year	0.02282	0.03666	0.07090	0.07540	0.00680	0.00197

RANS-VOF Model: Wave Forces

RANS-VOF Model: Wave Overtopping

Wave energy reflection

Reflection Coefficient:

89% Existing Wall Height 97% Proposed Wall Height

SW Transformation Model

Spectral wave modeling

- Performed in DHI Mike
- To determine the nearshore wave climate for four scenarios:
 - Existing & Proposed conditions under high water
 - Existing & Proposed conditions under low water
- Models validated/calibrated with Acoustic Doppler Current Profiler (ADCP) data

SW Transformation Model

- The same mesh and bathymetry are used for existing and future conditions
- The crest of the seawalls is increased for the proposed condition and includes the South Seawall extension
- The seawalls are reflective boundaries which were calculated from Mongoose:
 - 89% for existing conditions
 - 97% for future conditions

SW Transformation Model: South Seawall

Jacobs

SW Transformation Model: South Seawall

Wave height difference map:

- Subtract existing from proposed
- Cool colors denote a decrease in wave height
- Warm colors denote increase
- Minor decrease in wave energy near public beach
- Minor increase in wave energy near northeast properties

Conclusions

Mongoose Model:

- Raising the walls significantly reduced wave overtopping
- Results are in same ballpark as widely accepted Eurotop calculations
- Proposed case reflects 9% more wave energy than existing case
- Model verified by empirical wave force calculations

Wave Transformation Model:

- Negligible difference to adjacent properties
 - Southwest corner- decreased wave heights and overtopping
 - Southeast corner- decreased wave heights near the public beach
 - Northwest corner- slightly decreased wave heights, significant decrease in overtopping
 - Northeast corner- Mostly decreased wave heights with slight increase north of wall

Acknowledgements

The presenter is grateful to his co-authors and National Park Service (NPS) for the permission to publish this information.

Atilla Bayram

Alicia Kauffman

Erika Rosenstein

