

EXPERIENCES WITH THE USE OF GEOTEXTILE TUBES TO DEWATER NAVIGATIONAL DREDGED MATERIAL IN COASTAL NEW JERSEY

W.S. Douglas, C. Mullan, J. Heeren, S. Minnich, and M. Lunemann

Dewberry

NJDOT OMR OVERVIEW

- Historically, beach replenishment or stored in CDFs
- Innovative strategies for dredged material management

ATLANTIC COASTAL ZONE OF NEW JERSEY

- 190 marked & maintained state channels; seven (7) inlet channels
- 400 marinas, 325 boat ramps, 235 commercial fishing slips
- 250 water dependent businesses
- 40,000 private boat slips

New Jersey Atlantic Coastal Zone Marine Transportation Features

NJDOT OMR – USE OF GEOTEXTILE TUBES OVERVIEW

- Suitable placement sites are not always available
- Onsite dewatering
 - Active methods (hydrocyclones and belt filter presses)
 - Passive methods (retention basins or geotextile tubes)

- Manufactured to any custom size;
- Able to be placed on top of one another;
- Includes the use of a containment area;
- Viable option for both small and large projects in terms of capacity for material and/or project site footprint.

HOW DO THEY WORK?

- Tubes are filled via a manifold,
- Water quality polymers and coagulants are used;
- Continuous observation with regular agitation;
- Tubes dewater over several weeks.
- Excavated and trucked offsite if desired.

CASE STUDY SUMMARIES

Project	Dredging Need (CY)	Dredging Window	Dredged material management options	Other constraints	
Shark River	105,000	July 1 - Dec 31	None available	Small sites with limited availability in close proximity to residences	
Manasquan Phase II	88,000	July 1 – Dec 31	CDF at capacity, no restoration opportunities	Limited site availability, highly developed tourist area, in close proximity to residences	
Absecon Creek	71,000	July 1 – Dec 31	Poor site conditions in CDF, insufficient capacity for traditional use	Long pumping distances over sensitive coastal habitat	
West Creek	100,000	Sept 1 – Dec 31	Poor site conditions in CDF, insufficient capacity for traditional use	Close proximity to residences and sensitive coastal habitat	

CASE STUDY SUMMARIES

Project	Volume Dredged (CY)	Dredging Days / Calendar Days	CY per day	Processing Area (acres)	# of Tubes Deployed	Minimum Dewatering Time (days)	Project Cost/CY* (US \$)
Shark River	24,619	64/121	385	1.3 / 2.5**	25	136 / 172**	100.20
Absecon Creek	70,730	72/98	982	14	45	All material remains on site	84.61
Manasquan	36,332	44/65	826	2.4	21	29	142.34
West Creek I and II	110,680	103/113	1075	14	94	All material remains on site	130.78

AVG WATER CONTENT VS. DEWATERING TIME

ROLLING GEOTEXTILE TUBES

FILLING SEQUENCE

NIMBY: RESIDENTIAL PROXIMITY

DEWATERING AND EQUIPMENT DELAYS

FREEZING TEMPERATURE DELAYS

SUMMARY

- Successfully deployed for maintenance dredging projects (small site footprint; highly developed areas)
- Containment Area Design
- Proper methodologies and oversight of the operation is critical (polymer dosage and geotextile tubes);
- Risk mitigation
- Communication is key
- Community Relations

QUESTIONS

CONTACT INFORMATION: SCOTT.DOUGLAS@DOT.NJ.GOV JOSELYN.WALL@DOT.NJ.GOV CMULLAN@DEWBERRY.COM JHEEREN@DEWBERRY.COM SMINNICH@DEWBERRY.COM MATTHEW.LUNEMANN@WSP.COM

