

Kendall Bay, Sydney, NSW, Australia

WEDA 2023
DREDGING SUMMIT AND EXPO

JUL 17-20, 2023 | LAS VEGAS NV

Dogus Meric, Ph.D., P.E.

Christopher A. Robb, P.E.

Overview

- Where is Kendall Bay?
- Why was remediation required?
- Design and Construction
- Lessons Learned

Where is Kendall Bay?

Site Background

Formerly home to the largest gasworks site in the southern hemisphere

Site Background

Upland remediation was completed in the 90's and former gasworks

site was redeveloped

Regulatory Process

- Remediation order was released in 2007
- Site investigations and risk assessment were performed between 2007 and 2016
- RAP was released in 2018

Selected Remedy

- 150 psi (1 MPa) UCS requirement for the ISS monolith
- 300 psi (2 MPa) requirement for the deep ISS columns (no basis of design)
- 1x10⁻⁵ cm/s hydraulic conductivity requirement
- More than 90% reduction in leachability for ISS (not very meaningful)
- No basis of design or performance criteria for the carbon treatment layer (22.5 lbs. of GAC/ft² is very costly)

ISS Treatability Study

Focused treatability study was performed to identify a mix design that would meet the performance criteria.

- Identified cement dosage and mix design composition
- Evaluated grout modifier reagents (i.e., superplasticizers, accelerants, antiwashout additive)
- Evaluated reactive amendments (i.e., GAC/PAC, oleophilic clay, RemBind)
- Evaluated impacts of excess sea water on the mix design

ISS Pilot Study

Pilot study was performed to evaluate the means and methods, field

performance, constructability and production rates

Mass mixing tool to build ISS raft

Pilot Study Results

Multiple lines of evidence were used to assess field trial performance, and optimize full-scale remedy design

Column ID	Temperature (C°)	рН	Moisture Content	Marsh Funnel Viscocity (sec)
E ·	16.7	12.5	61%	40
	17.8	12.1	38%	
F	22.8	12.3	38%	NR
G	25	11.7	NR	66
Н	21.7	11.9	NR	NR
Field Screening Data				

Legend: VSA3-Bulk Sediment Leaching Interpolation

VSA3-Bulk (Duplicate) Sediment Leaching Interpolation

Phase 1 Laboratory Trial Southern Area Sediment VSA3-Bulk Pre-Treatment Cumulative Mass Release (EPA Method 1318)

Phase 1 Laboratory Trial Southern Area Sediment VSA3-Bulk (Duplicate) Pre-Treatment Cumulative Mass Release (EPA Method 1318)

Phase 3 Raft 1 Post-Treatment Cumulative Mass Release (EPA Method 1315)

Reduction in Cumulative Mass Release Pre- and Post-ISS Treatment

Design Optimization

Original design as depicted in EPA-selected remedy

- A grid layout of deep ISS columns were originally planned to provide structural stability to mass mixing ISS panels
- Two different types of ISS equipment would have significantly slowed down the production rates and complicate the sequencing
- Further geotechnical evaluation concluded that deep ISS columns are not needed for stability

Design Optimization

Site-specific chemical mass release data from ISS pilot study was used to refine the GAC treatment layer thickness and composition (> \$3MM in cost savings)

Original Cap Design in EPAselected Remedy (22.5 psf GAC)

Southern Area Optimized Cap
Design
(Completely Eliminated GAC
Requirements)

Northern Area Optimized Cap
Design
(97% Reduction in GAC
Requirements)

COMPLIANCE POINT

REVISED TREATMENT LAYER (0.7 lbs. GAC/ft²)

Approved Design Criteria

Dissolved phase concentration to be below 70 ug/L for PAHs and 700 ug/L for PHCs at treatment layer surface during at least a design life of 100 years

Environmental Controls

Access Dredge & Debris Removal

Access Dredge to Allow Barge Access to Shallow Areas

Removal of Old Piles with an Excavator

Removal of Old Piles with a Pile Driver

ISS Batch Plant

ISS Mixing Equipment

Average production rate ~130 CY/day (min: 9 CY/day; max: 255 CY/day)

Total volume 9,500 CY

ISS Swell Management

Observed ISS swell ~40%
Swell removed every 3 to 5 days

ISS CQC and Tracking

Collected cores (one core per day) of the ISS treated sediment within 24 hours of mixing (100% recovery)

Samples were processed on barge and shipped to laboratory for UCS testing within 2 to 7 days after mixing

Cap Placement (Treatment Layer)

Production rate ~1,000 m²/day

Cap Placement (Armor Layer)

Takeaways

- ISS is a viable remediation tool for subaqueous sediments
- Don't hesitate to "ask why" on regulator selected remedies. There could be significant cost savings while still being protective of human health and the environment
- Close collaboration between owner design team contractor regulator is key to innovation and pushing boundaries of existing tools and technologies
- Design, treatability/pilot study, and full-scale construction completed in 33 months (includes a separate procurement step prior to full-scale remedy)

- Project of the Year Award
- Sustainable Project of the Year Award

Sustainable Change for Good Award

Questions

