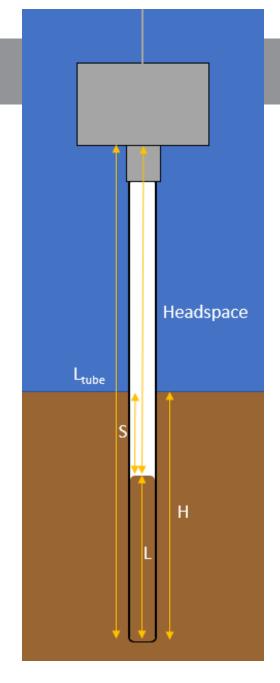
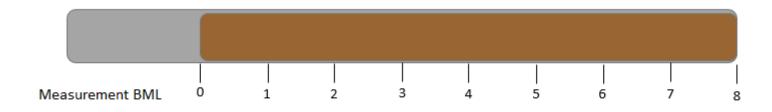
Reducing Sediment Remediation Costs by Improving Sampling Accuracy

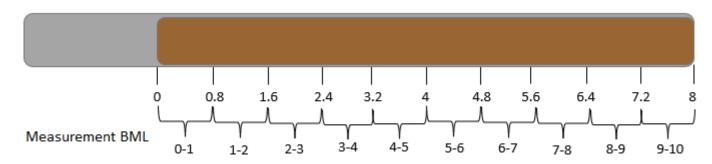
WEDA Pacific Chapter Meeting San Francisco, California October 2022


Presented by Teal Dreher, PE Floyd|Snider

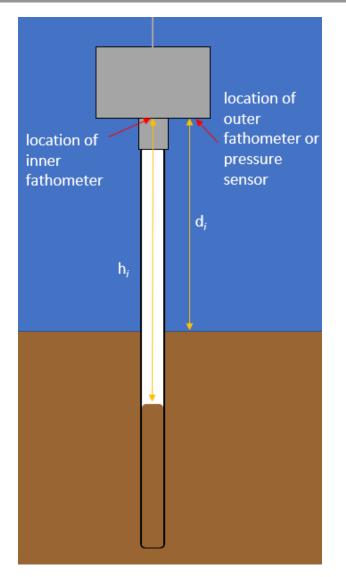
Vibracore Measurements


- Length of core tube (L_{tube}) Headspace = recovered sediment (L)
- H is depth of penetration (field measured)
- For full penetration, H = L_{tube} and S = Headspace
- Percent Recovery (%R) = L / H * 100
- S measurement is where uncertainty lies in conventional vibracoring!

Uncertainty in Conventional Techniques


• Static Method

 \odot Assumes all material loss is from bottom of core upon retrieval

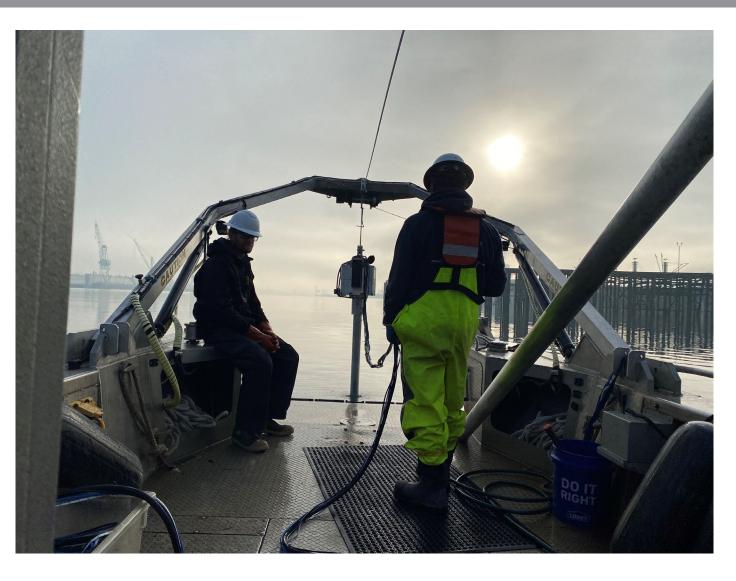

• Stretch Method

O Assumes uniform recovery throughout drive

Vibracoring Sediment Acquisition Monitoring (V-SAM)

- Measures incremental depth to mudline inside and outside of core tube
- Incremental depth of penetration (d_i) and incremental headspace (h_i) are recorded at various stages through the drive, typically in 1' to 3' intervals
- At start of drive, h_i = L_{tube} with adjustments for location of fathometer
- Incremental L and H are calculated from obtained values

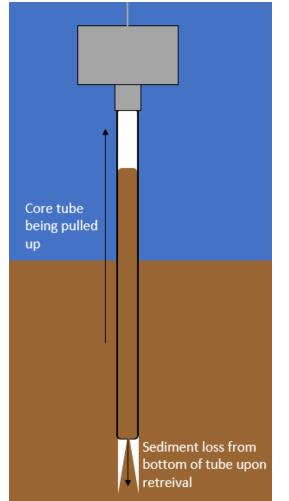
Equipment

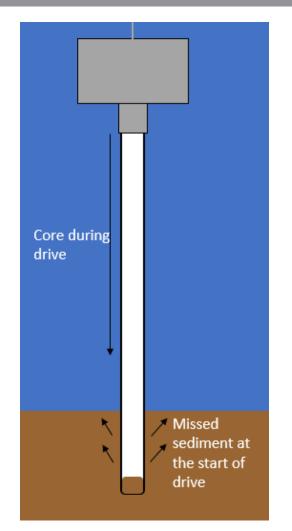


Sample Data Collected with V-SAM

Fathometer Readings		TUBE (ft.)		Increment		Core Cut Plan (ft.)	
Depth	Acquire	Drive	Acquire	% Recover	Comment	In-Situ	Core
12.1	20	0.0	0.0			HS	3.2
15	18.9	2.9	1.1	38%		0.0	0.0
18	17	5.9	3.0	63%		1.0	0.4
21	14.1	8.9	5.9	97%		2.0	0.8
24.1	10.7	12.0	9.3	110%		3.0	1.2
27.2	7.5	15.1	12.5	103%		4.0	1.8
30	4.8	17.9	15.2	96%		5.0	2.4
31.1	3.4	19.0	16.6	127%		6.0	3.1
						7.0	4.1
						8.0	5.0
						9.0	6.0
						10.0	7.1
						11.0	8.2
						12.0	9.3
						13.0	10.3
Process core	? (y/n/b/x)*	у				14.0	11.4
	п	Interpolate	ed value			15.0	12.4
:		"Accepted	"/"Rejected	d"/"Bulk Sam	ple Only"/"No Core Recovered"	16.0	13.4
						17.0	14.3
						18.0	15.3
						19.0	16.6

Considerations for the V-SAM System

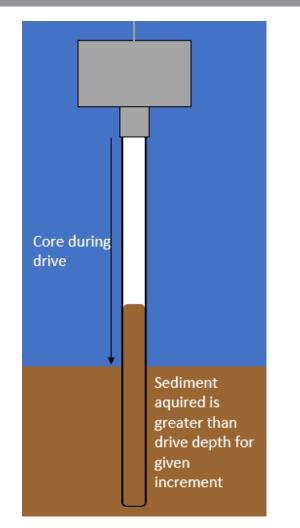

- Drive increment
- Shallow water
- Soft sediment
- Losses upon retrieval
- Instrument precision
- Percent recovery
- Uncertainty
- Acceptance criteria


Data Collection using V-SAM

- 3 projects in a riverine environment
- 140 cores collected using V-SAM
- ΔS is the difference between the final acquisition reading for headspace and the measured headspace after retrieval

		Average	
Number of	Average Increment	%R,	Average ∆S
Cores	of Data Collection	Total	(+/-)
140	2.2 ft	86%	0.2 ft

- Losses from Bottom of Core Tube during Retrieval
 - Only 4 cores out of the 140 cores collected had losses out the bottom of the core greater than 6" upon retrieval
 - \odot Maximum loss out the bottom was 1.7'
 - \odot Average change from the final acquisition reading to the measured headspace (ΔS) was 0.2'
 - Sediment loss from the bottom of the core was not a significant trend!

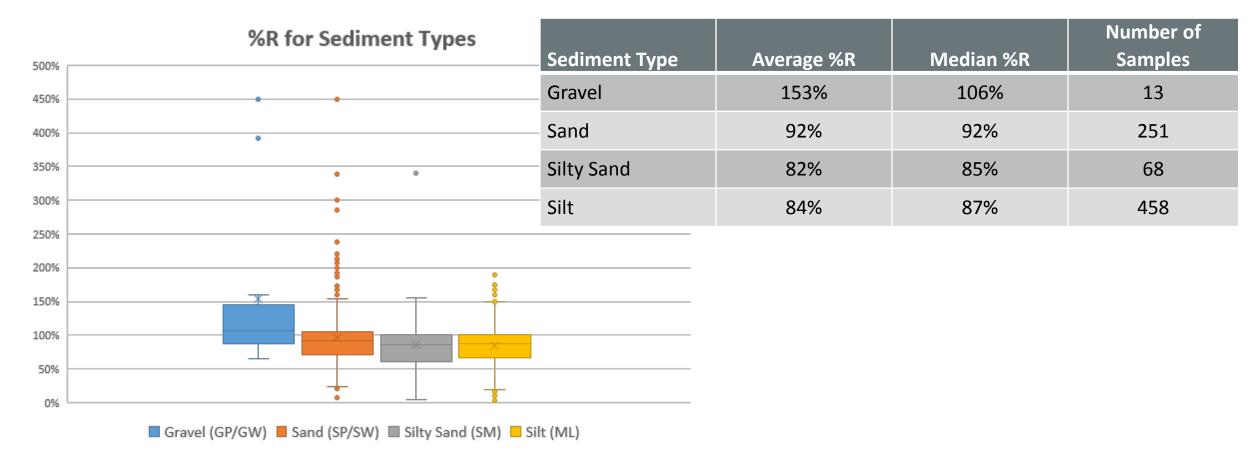


FIOYDSNIDFR

- Missing Sediment from the Start of the Drive
 - To determine how much sediment was missed in the start of the drive, %R for the first increment was compared with %R for other intervals
 - 30% of cores had a percent recovery of less than 50% within the first increment
 - Over 40 cores missed at least 1.1 feet in the first increment of the drive
 - Some cores missed up to 5 feet of material from the start of the drive
 - Missed sediment from the start of the drive was much more significant than sediment lost from the bottom of the core!

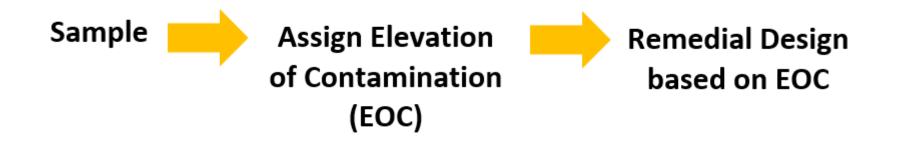
• Missing Sediment from the Start of the Drive

500% -	%R for Drive Increments				Percent of Intervals with	Percent of Intervals with	
450% -	•	Drive Increment	Average %R	Median %R	Less Than 50% Recovery	Greater Than 100% Recovery	Number of Samples
400%	0	First	66%	63%	30%	9%	140
350%	0	Middle	87%	90%	9%	25%	516
300% 250%	0	End	118%	100%	7%	47%	140
200%							
150%							
100%							
50%							
0%	• First Interval 📕 Middle Intervals 🔲 End Interva						

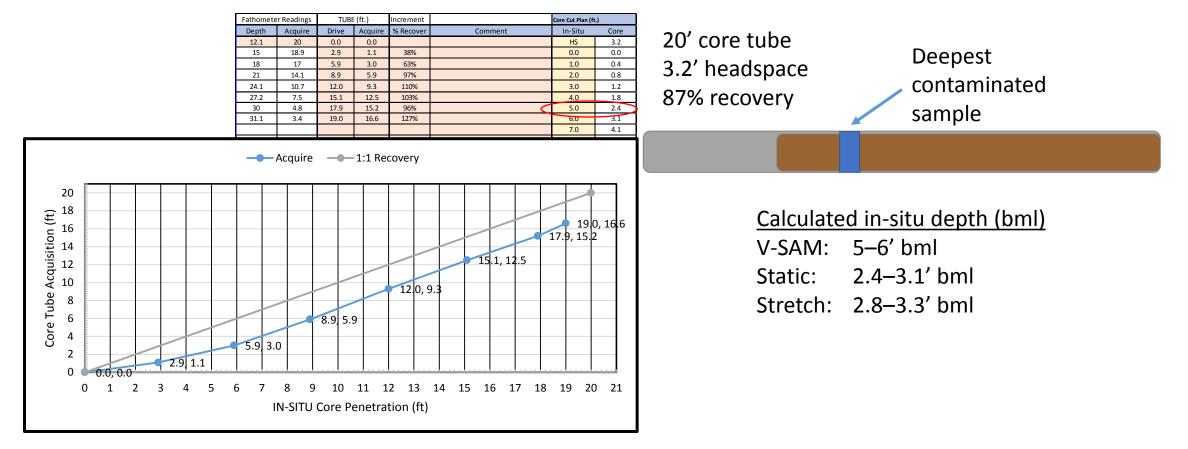

Increments with Greater than 100% Recovery

 Can be an indicator of material expansion within core tube
 Over 47% of the final increment in a drive had %R>100
 Likely due to additional vibration at end of drive to try and "break through" refusal point

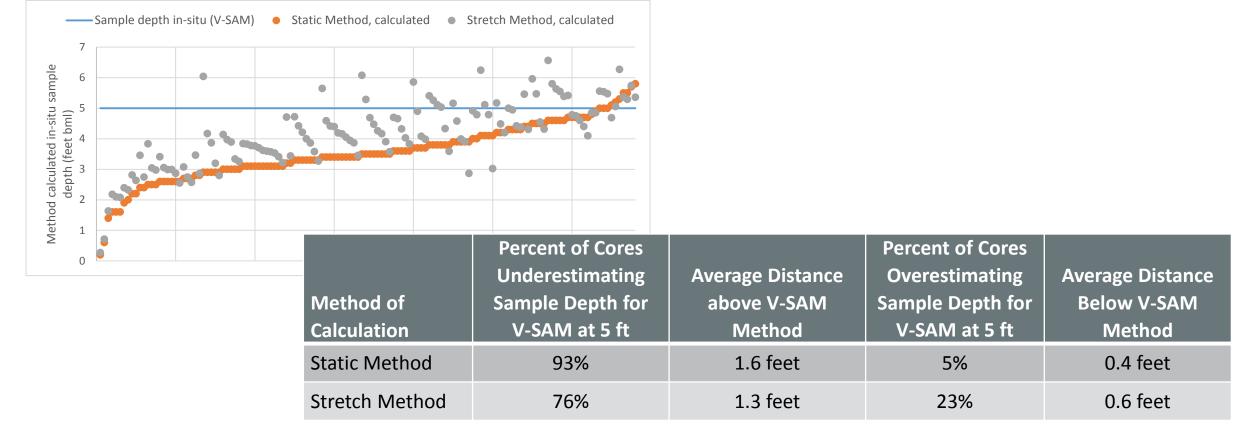
Can mask earlier intervals of poor recovery when using conventional methods


Drive Increment	Average %R	Median %R	Percent of Intervals with Greater Than 100% Recovery	Number of Samples
First	66%	63%	9%	140
Middle	87%	90%	25%	516
End	118%	100%	47%	140

• Percent Recovery for Different Sediment Types


- Percent Recovery for Different Sediment Types
 - \odot 58% of intervals were classified as primarily silt
 - Sediment that was missed during the drive (likely soft silts) would not be accounted for and would bias the silt percent recovery high
 - Small sample size for gravel
 - \circ Sands had an average percent recovery 8 to 10% higher than silty sands or silts

• The uncertainty associated with estimating in-situ DOC bml can limit the efficacy of precision remediation dredging, which can affect the cost, schedule, and overall success of remedial actions



- Theoretical Differences in Calculated In-Situ Sample Depth versus Using V-SAM Technology
 - In order to estimate differences in calculated in-situ sample depth bml, an arbitrary sample depth of 5' using the V-SAM method was selected
 - Actual data were taken and used to calculate equivalent sample depth for each core using the Static and Stretch methods

• Theoretical Differences in Calculated In-Situ Sample Depth versus Using V-SAM Technology: EXAMPLE

• Theoretical Differences in Calculated In-Situ Sample Depth versus Using V-SAM Technology

- Theoretical Differences in Calculated In-Situ Sample Depth versus Using V-SAM Technology
- Assuming each core represents a 100'x100' area for a total area of ~ 32 acres
 - Static Method Could result in needing to re-dredge ~77,000 CY of material, and ~1000 CY of presumed clean material would have been dredged
 - Stretch Method Could result in needing to re-dredge ~51,000 CY, and ~ 7,000 CY of presumed clean material would be dredged

Actual EOC

• For theoretical 32-acre project, associated costs with overdredging or having to redredge:

Cost of Overdredging					Static	Stretch
Dredging	\$	31	CY	\$	32,000	\$ 223,000
Disposal		111	Ton	\$	184,000	\$ 1,300,000
				Subtotal \$	220,000	\$ 1,520,000
Cost of Redredging						
Re-MOB/DEMOB	\$	1,000,000	LS	\$	1,000,000	\$ 1,000,000
6" сар	\$	34	CY	\$	1,600,000	\$ 1,300,000
Resample	\$	500,000	LS	\$	500,000	\$ 500,000
				Subtotal \$	3,100,000	\$ 2,800,000
				Contingency (15%) \$	465,000	\$ 420,000
				TOTAL \$	3,800,000	\$ 4,700,000

• Could also end up needing to re-characterize and redesign! FLOYDISNIDER

• Not to mention additional dredging that wouldn't have been budgeted for...

Unbud	ed Cost	Static			Stretch		
Dredging	\$	31	CY	\$	2,000,000	\$	2,000,000
Disposal	\$	111	Ton	\$	14,000,000	\$	9,000,000
			TOTAL	\$	16,000,000	\$	11,000,000

• Could be the difference in receiving a "No Further Actions" letter from the agencies or having to go back and have on-going remediation!

Thank you

Two Union Square 601 Union Street, Suite 600 Seattle, WA 98101

teal.dreher@floydsnider.com

(206) 292-2078

www.floydsnider.com