

2 Critical Shoals: Post Office Bar & Albina Turning Basin Lower Willamette River Federal Channel, Portland, OR

PROJECT DETAILS

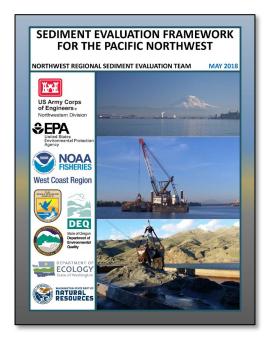
Portland Harbor Superfund Site
 PCBs

PAHs

OC-Pesticides

- Critical Shoals (volume):
 - PO Bar (148 Kcy)
 - Albina TB (180 Kcy)

DISPOSAL OPTIONS

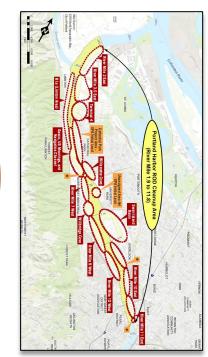

- Suitable material:
 - Aquatic disposal of PHSS sediment <u>not allowed</u> in the Columbia R.

Aquatic disposal at Ross Is. (\$)

Unsuitable material: landfill (\$\$\$)

^{*} CRD = Columbia R. Datum

3 Authorities Govern LWR Disposal


Clean Water Act §404(b)(1) (USACE/EPA)

Sediment Evaluation
Framework for the PNW
(SEF)

AQUATIC DISPOSAL

Superfund (EPA)

Portland Harbor ROD
Cleanup & Remedial
Action Levels

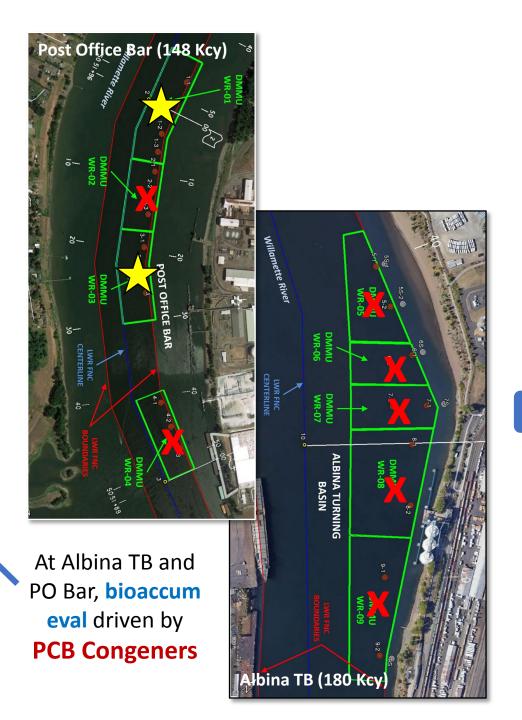
SEF provides regional guidance for dredged material testing

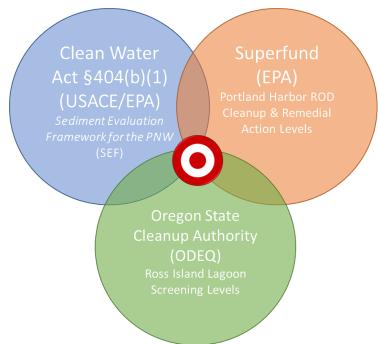
SEF <u>testing</u> methods regionally accepted, but <u>interpretation of the</u> <u>results</u> varies

Oregon State
Cleanup Authority
(ODEQ)

Ross Island Lagoon
Screening Levels

Sampling Design and Results


SEDIMENT EVAL


Conventionals (grain size, TOC, sulfides, ammonia)

Sediment Chemistry (heavy metals, SVOCs incl. PAHs, PCB Aroclors, OC-Pesticides, organo-tins, dioxins & furans)

Bioassays

(benthic toxicity & bioaccumulation eval)

RESULTS

Post Office Bar

2 suitable DMMUs (WR-01, WR-03) 2 unsuitable DMMUs (WR-02, WR-04)

Albina Turning Basin

All 5 DMMUs unsuitable (WR-05 thru WR-09)

Analytical Considerations – Comparison of PCB Methods

Method	EPA 8082 (Aroclors & Congeners)	EPA 1668 (Congeners)
Rationale:	 2019: Analyzed for Aroclors only on sediment chemistry 	 2021: Analyzed for 209 Congeners in sediment and tissues Used to meet lower TTLs for bioaccumulation
Pros:	 <\$ Standard laboratory equipment (gas chromatogram) Detection limits meet most project requirements 	 209 PCB congeners Lower detection & reporting limits
Cons	 Higher detection & reporting limits which may not meet all regulatory requirements 	 \$\$\$ Specialized equipment (hi res mass spec) = fewer laboratories Preparation & analysis take longer



- Test Duration national standard is 28 days; PNW regulatory framework prefers 45 days; Willamette R. study was 28 to 35 days
- Co-exposure of test species One non-native species, *Corbicula fluminea*, had poor health and had to be replaced after exposure began, resulting in different exposure durations between the species, 28d for clams, 35d for worms
- Low tissue mass recovery the supplier provided less mass than requested requiring a stagger-start of replicates, recovery was challenging, replacement clams were smaller than expected

Test Duration

- In Lumbriculus PCBs, DDTs, TCDD and PBDEs reach steady state in <u>28 days</u>
- Lumbriculus reproduce by splitting approximately every 2 weeks

Recommendation

Run bioaccumulation for protocol-standard 28 days

Co-exposure of test organisms

PROS

- Uses less sediment
- Reduces field and lab effort

CONS

- Risky if one of the organisms has poor health
- Potential for insufficient food for both species

Recommendation

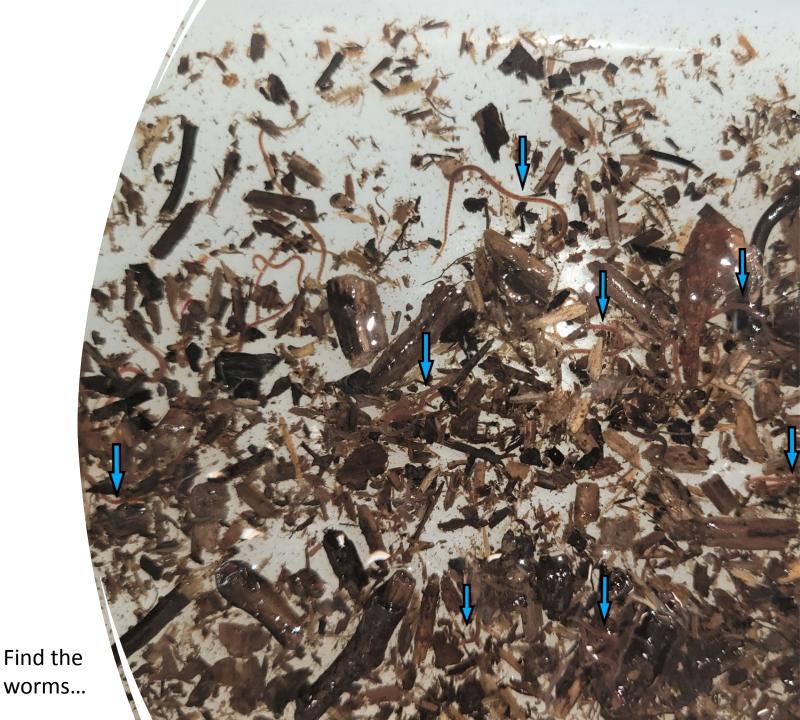
NO CO-TESTING

Poor Health of Corbicula

- Only field-collected (not cultured)
- Non-native
- No official test method

Recommendation

- Consider native species to better represent and assess potential impacts/ecological response
- Western pearl shell mussel (*Margaritifera falcata*) a possible option; USGS is developing bioaccumulation testing methods for freshwater mussels
- OR test with *Lumbriculus* only, like the rest of the nation



Tissue Mass

Extraction of worms from samples with high woody debris and/or detritus like LWR is challenging

Target is 10 g TOC: 1 g worms (dry weight) per testing protocol

Inputs:

TOC

Percent solids

Sediment density

Mass of worms

needed for analysis

Calculations

Volume of sediment needed for testing (wet)

Tissue Mass Recommendations

- If TOC data are not available, target a 0.12 L sediment: 1 g tissue (wet weight) ratio when sampling, as this will usually provide adequate TOC: tissue ratio for sediments with at least 1% TOC.
- Stock chambers with 50% more tissue than needed. Order 30 to 50% more mass than that from supplier. Use USACE ERDC self-extraction method for Lumbriculus

USACE ERDC Self-Extraction Method – Let The Worms Do The Work

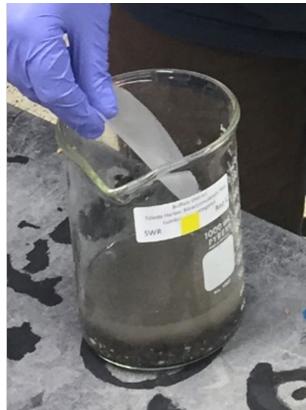


Photo Credits: USACE ERDC

0 hour

24 hour

Summary & Conclusions

- Early and ongoing coordination
- Know your guidelines and reporting requirements
- Bioaccumulation Evaluation
 - Plan ahead to ensure sufficient tissue mass (overstocking test species in chamber)
 - 28-day exposure period
 - No co-testing of organisms
 - Find NW-specific filter feeder (mussel) OR Lumbriculus only

Photo Credits: Jessica Stokke, USACE (top); Terence Cake, Taylor Engineering (bottom)

USACE Portland District Contact Information:

James McMillan (Sediment Quality Team Leader, Ocean Dumping Coordinator)

(503) 915-7521, james.m.mcmillan@usace.army.mil

James Holm (Portland Sediment Evaluation Team Leader, SQ Specialist)

(503) 808-4963, james.a.holm@usace.army.mil

Channels and Harbors Project, Waterways Maintenance Section Sediment Quality Team (CENWP-ODN-W)

ANAMAR Contact Information:

Michelle Rau (CEO / Sr. Project Manager)

(352) 377-5770 ext 107, mrau@anamarinc.com

Paul Berman (QA Officer)

(352) 377-5770 ext 106, pberman@anamarinc.com

EcoAnalysts Contact Information:

Mary Ann Rempel-Hester (Senior Aquatic Toxicologist / Quality Assurance Manager)

(360) 297-6040, mrempel@ecoanalysts.com

Brian Hester (Director of Operations / Ecotoxicology)

(360) 297-6040, bhester@ecoanalysts.com

