INTERACTIVE DESIGN PLATFORM

Interactive Design Platform WEDA Dredging Summit & Expo 2022

Overview

- Introduction
- About C-Job Naval Architects
- Why create the Interactive Design Platform?
- What is the Interactive Design Platform?
- How does it work?
- Continued development

About the Author

- Matthys Dijkman
- Project manager and Concept Design Lead
- MSc Marine Technology, Delft University of Technology

About C-Job Naval Architects

Dedicated & independent Naval architects

Our drive:

"A sustainable marine sector within one generation"

Our method:

Tailored solutions, co-created with our clients

Our scope:

Projects from initial phase to production phase Full – scope projects as well as partial projects

Independent design and engineering company

- Serving ship owners and shipyards worldwide
- 7 offices:
 - Houston
 - Hoofddorp
 - Rotterdam
 - Heerenveen
 - Nikolayev
 - Athens
 - Gdansk
- > 180 in-house engineers employed

INTERACTIVE DESIGN PLATFORM

Interactive Design Platform

Why create the Interactive Design Platform?

- Translating <u>design requirements</u> in a <u>proof of concept</u>
- Outcomes initial design:
 - Design Parameter Study
 - Sketch General Arrangement

Traditional (hand-work) Design Parameter Study:

- Reference Selection
- Defining the design variations
- Iterations of design variables
- Selection of solution based on trends and experience

What is the Interactive Design Platform?

Online interactive platform

Developed for:

- Early design stage of TSHD's
- Empowering customers
- Close cooperation
- Optimizing towards operational deployment
- Assess impact of design requirements
- Support decision-making
- Address gap between standard and one-off

It delivers higher accuracy, more control and more flexibility than traditional methods

How does the Interactive Design Platform work? - input

Definition of Design Space:

- Design objectives (payload, speed, etc.)
- Parameter constrains (breadth, draught, etc.)
- Power Installed (dredge, jet, etc.)
- Optional (water density, correction, margin)

How does the Interactive Design Platform work? - input

The platform has initially been optimized for dredger designs

Input values include:

- Dredging materials
- Dredging depth
- Sailing distance between dredging and discharge site
- Discharge methods

• Alternative energy sources

How does the Interactive Design Platform work? - input

Reference Selection

- C-Job's Maritime Intelligence Tool ٠
- Over 170,000 ships (over 500 TSHD's)
- Making informed decisions •

PARALLEL COORDINATES PLOT SHOW VESSEL MARKET TRENDS

Gene	eral Desig	gn definitions	Load F	actors	لې ‹	i 🔺 🗙	8 9 1	Series 🗸 🖌 🖓	shed
ut				C3 <	Reference	Selection		>	53
oforon				с	urrent Name	Year Built	Owner	IMO Number	Flag
cicicii	Paramet T	-	Values T						
1	Length	min.		A	L-IDRISI	2012	Dredging and	9572707	Luxen
2	0	max.					Maritime		
3	Breadth	min.					Management S.A.		
4		max.				2009	DEME	9501954	Belgiu
5	Draught	min.		b	alder r	2011	robde nielsen	9578232	denm
б		max.					a/s		
7	Hopper volum	min.	5000	с	HARLEMAGNE	2002	Dredaina	9243289	Luxer
8		max.	8000				International		
9	Deadweight	min.					NV		
10		max.		С	RESTWAY	2008	Baggermaatschap	9420332	Cypru
11	Year Built	min.	1990				Boskalis BV		
12		max.		cr	istoforo olombo	1994	jan de nul nv	9055929	belgiu
				d	ci dredge xix	2012	dredging corp india Itd	9612399	india
				gi hi	uang zhou ao	1994	cccc guangzhou dredging co ltd	9056820	china repub
				h	wa way	2012	hwa chi construction co Itd	9633824	chine
				ile	embe	2015	transnet national ports	9741891	south
				М	ARIEKE	2006	Dredging International NV	9360714	Luxer

How does the Interactive Design Platform work? - calculation

Each run of the Interactive Design Platform (following values input) will assess **multiple** design variations on various operational scenarios

• main particulars are determined, and performance is calculated.

Calculating results		
In progress		
	Cancel	\cap

How does the Interactive Design Platform work? - method

How does the Interactive Design Platform work? - results

- Estimated costs per cubic metre (CCM) of dredged material.
- Comparison to reference vessels.
- Different Design Definitions to determine how a change in the effects the optimal variation.
- Overview Report expert view at core of the design process
- Post-processing market study

Processing the outcomes:

- Sensitivity Analysis
- The optimal set of main particulars (design variation) for various fuel scenarios.
 - Determining exactly where the **tipping point** occurs.
- Competitiveness analysis new design with dredging fleet.
- Comparison between dredge equipment configurations.

Design Parameter Study

Continuous Development

C-Job TSHD series includes nine different models, three of each of the three main classes of dredgers

- Hopper capacities are 20-40,000m³ for capital dredging
- Hopper capacities are 5-15,000m³ for multi-purpose dredging
- Hopper capacities are 1.5-7,000m³ for maintenance dredging
- The platform can be adapted for any class of vessel, using any set of variables
- Data-driven interactive model

Continuous Development

Further expanding the data-drive approach:

- Implementation Dredge Performance Calculations
- Link towards C-Job Accelerated Concept Design

Accelerated Concept Design

Questions?

For more information, please contact:

C-Job Naval Architects

Matthys Dijkman

m.dijkman@c-job.com

Or visit us at booth #12

DEDICATED NAVAL ARCHITECTS

Houston

10077 Grogans Mill Rd. Suite 590 The Woodlands, TX 77380 USA +1 281 220 6992 houston@c-job.com

www.c-job.com info@c-job.com +31 (0)88 024 37 00