

Port of Hueneme
DeepeningA Project 20 Years in the MakingChristina Birdsey

July 27, 2022

PORT OF HUENEME VITAL NICHE PORT

\$11.4 Billion in Cargo

• #1 WC Banana Port

#4 CA Container Port

#6 WC Container Port

#6 US Auto Port

In Top 10% of US Ports

OUT LEASE PROPERTY

SAN NICOLAS ISLAND

>\$65М то мвус

NORTH TERMINAL

JOINT USE AGREEMENT

SOUTH TERMINAL

40 FT MAIN CHANNEL DEPTH
120 ACRE TERMINAL
24 ACRE TERMINAL (JOINT USE)
130 ACRE NAVY OUT-LEASE

4,250 LF6 DEEP DRAFT BERTHS320 LF1 SHALLOW DRAFT256,000 SFON-DOCK COLD STORAGE299ON-DOCK REEFER PLUGS

Contra States

DEEPENING COMPONENTS

U.S. Army Corps of Engineers Deep Draft Navigation Study (1999)

U.S. Army Corps of Engineers, Oxnard Harbor District

Confined Aquatic Disposal Cell and Maintenance Dredging (2008-2009)

Oxnard Harbor District, U.S. Army Corps of Engineers, U.S. Navy

Federal Channel Deepening (2020-2021)

U.S. Army Corps of Engineers, Oxnard Harbor District, U.S. Navy

Oxnard Harbor District Berth Deepening (2019-2020, 2023)

• Oxnard Harbor District

DEEPENING USACE DEEP DRAFT NAVIGATION STUDY

 The U.S. Army Corps of Engineers Los Angeles District completed the Port of Hueneme Deep Draft Navigation Study in 1999

- The Study concluded that deepening the harbor was feasible and would increase cargo efficiency
- Deepening the Federal channels and berths by approximately 5 feet would require dredging of more than 600,000 cubic yards of sediment
- The Study proposed beneficial reuse of the dredged sediment to nourish Hueneme Beach

DEEPENING BUSINESS NEED FOR DEEPENING

- OHD competes in a global shipping market and handles more than \$11.4 billion of ocean-borne freight
- Deepening increases the depth to which vessels can load and still call on the port, which increases operational productivity
- Deepening the berths to -40 feet MLLW creates greater capacity to handle demand, reduces bottlenecks, and improves economies of scale
- Deepening addresses current needs and prepares the port for future growth
- Deepening reduces vessel air emissions by reducing time spent at anchorage awaiting high tide to enter the harbor and by enabling more cargo to be loaded on ships, reducing emissions per pound of cargo

DEEPENING SEDIMENT ISSUES IN THE HARBOR

Oppard Harbor District

DEEPENING SEDIMENT CONTAMINATION

- Approximately 314,000 cubic yards of unsuitable sediment to be dredged
 - 60% from OHD and USN berths
 - 40% from Federal Channel
- Chemicals of concern included PAHs, PCBs, DDT, and TBT
- Sediments composed mostly of fine sands, silts, and clays with low organic carbon

DEEPENING RATIONALE FOR CAD APPROACH

- Provided an on-site solution
- Not tied to other development or funding
- Provided environmental protection
- Provided local beach nourishment
- Allowed for deepening to advance
- Restored authorized depths of OHD and USN berths
- Provided complete solution for all OHD, USACE, and USN
- Shared resources made it cost-effective

PROJECT ELEMENTS

KEY DESIGN ELEMENTS

- Maintain wharf stability
- Withstand vessel scour and bioturbation
- Isolate contaminants

KEY DESIGN ELEMENTS BERTHS

- Improve existing wharf structures to accommodate deeper berths
- Seismic stability of wharf and slopes
- Minimize impacts to vessel operations during construction

KEY DESIGN ELEMENTS FEDERAL CHANNELS

Maintain stability of existing structures
Nourish Hueneme Beach

CAD CONSTRUCTION SEQUENCE

CAD CONSTRUCTION AND MAINTENANCE DREDGING

CAD CROSS SECTION

CAD CELL EXCAVATION AND FILLING

Port Hueneme CAD site - 2009

BERTH DEEPENING ELEMENTS

- Improve wharf structures to accommodate deeper berth depth
 - Sheet pile toe wall
 - New fender system and wharf hardware
 - Repair concrete wharf deck
- Dredge berths to -40 feet MLLW
 - Beneficially reuse sediment for beach nourishment
- Phase construction to minimize impacts to Port operations

BERTH DEEPENING CONSTRUCTION

FEDERAL CHANNEL DEEPENING ELEMENTS

- Dredge 370,000 cubic yards of sediment for beneficial use to nourish Hueneme Beach
- Dredge 20,000 cubic yards of sediment unsuitable for beach nourishment for placement in the CAD
- Deepen Approach Channel to -44 feet MLLW
- Deepen Entrance Channel, Turning Basin, and Channel A to -40 feet MLLW

PROJECT FUNDING

CAD PROJECT FUNDING STUDY

Challenges

- Raising funds (total project cost ~\$14 million)
- Coordinating budget schedules among OHD, USACE, and USN
- Negotiating and scheduling with contractor

Opportunities

- All participants had funds allocated for smaller individual projects
- Project partners were committed to implement a shared solution
- Significant project momentum had been generated at the management level

CAD COST SHARING APPROACH

Separate the project into discrete components

- CAD cell excavation
- USN berth dredging
- OHD berth dredging
- USACE Federal Channel dredging
- Cap armor stone placement
- Long-term monitoring of CAD cell
- Estimate costs associated with each component
- Assign components to partners based on ownership, limitations in authority, funding schedules, and secondary agreements

CAD COST SHARING RESPONSIBILITIES

Project Feature	1	Responsibility		
	USACE	USN	OHD	_
Project Development - CEQA/NEPA Permitting - Engineering Design			*	
Contracting - Contract Management	1			
Construction - Equipment Mobilization - CAD Cell Excavation - Dredging USN Berths - Dredging OHD Wharves - Dredging "Hotspots" Within O&M Channel - Capping	*	* *	*	4 2
 Placing Armor Rock Water Quality Monitoring Sediment Confirmational Sampling Construction Management 	✓ ✓ ✓		 ✓ ✓ ✓ ✓ 	
Post-construction Activities - Long-Term Monitoring		√	1	

CAD CONTRACTING APPROACH

- USACE had an existing contract with Manson Construction for O&M dredging in Port of Hueneme and Channel Islands harbors
- USACE issued a contract modification for additional work associated with the CAD cell
- All funds were transferred to USACE for overall contracting and construction management
- Used existing cost sharing agreements between partners and developed new agreements when required

BERTH DEEPENING FUNDING STRATEGY

- OHD operates in a highly competitive global shipping market and must be strategic about infrastructure investments to achieve strategic goals
- Committed to a long-term approach to fund and construct berth deepening using a variety of financial tools, including grants
- Deepening of Berths 1 and 2 was funded by a US Department of Transportation Maritime Administration (MARAD) Transportation Investment Generating Economic Recovery (TIGER) grant
- Deepening of Berth 3 will be funded by a U.S. Economic Development Agency (EDA) grant

LONG TERM MONITORING

LONG TERM MONITORING

CAD

- 10 years of monitoring completed
- Sediment chemistry and grain size
 - Metals, TBT, DDT, PCBs
 - Multiple sample intervals
 extending through cap
- Porewater chemistry
 - Metals and PCBs
 - Consistent 3-foot interval in cap
- Bathymetry
 - Annual surveys to quantify changes in CAD surface

LONG TERM MONITORING CONCLUSIONS

- Sufficient cap thickness (7 to 10 feet as designed)
- Contaminant isolation
 - · Low chemical concentrations in cap porewater
 - Elevated chemical concentrations in sediment occur in lower core intervals below the cap, typically greater than 8 to 10 feet below the sediment surface
- Stable cap surface that is resistant to scour and is maintaining its integrity
- The CAD cell is performing as designed

SUMMARY

HARBOR DEEPENING MILESTONES

- 1999 USACE's Port of Hueneme Deep Draft Navigation Study Completed
- **2001** Deepening project on hold due to contaminated sediment in the harbor
- 2007 Strategic partnership between OHD, USACE, and USN to address contaminated sediment
- 2009 CAD and harbor-wide maintenance dredging completed
- 2019 Ten years of post-construction CAD monitoring completed

HARBOR DEEPENING MILESTONES

- 2020 OHD completes first phase of berth deepening
- 2021 USACE
 completes Federal
 Channel deepening
- 2023 OHD to complete second phase of berth deepening

SIGNIFICANCE TO WEDA MEMBERS

- Commitment of project partners and creative approaches to funding and agreements are critical for long-term infrastructure programs like harbor deepening
- Basing the cost-sharing approach on specific elements that could be funded by each partner was unique for a DOD project and was key to project success
- Implementing a strategic approach to grant funding for large programs requires a disciplined investment of time and resources to be successful
- A CAD cell can be a cost-effective and environmentally protective management approach for sediment that is unsuitable for beneficial reuse or unconfined disposal

The Port OF HUEDEDE Oxnard Harbor District

THANK YOU www.portofh.org