

ADVANCES IN USING MACHINE-LEARNING TOWARDS DREDGING-BEHAVIOR DETECTION

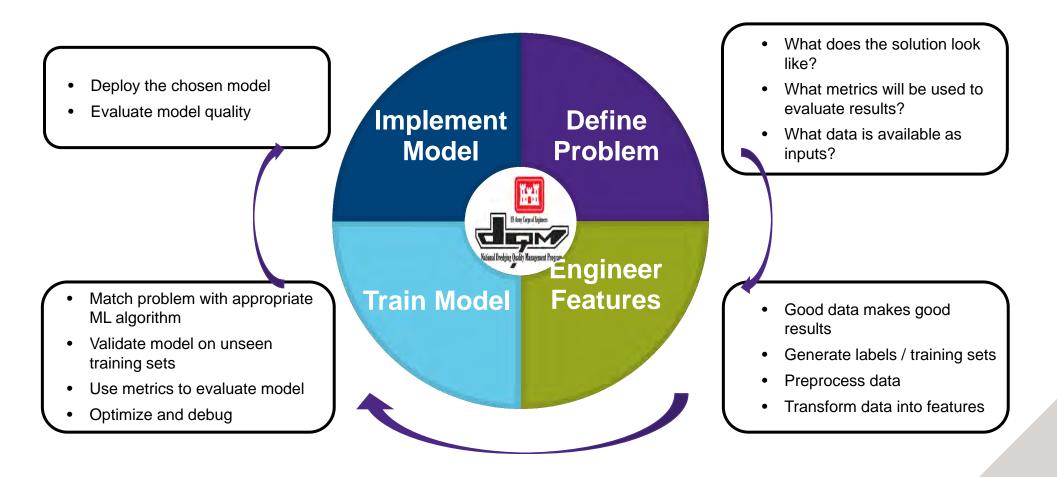
WEDA PACIFIC CHAPTER MEETING 2021

Seth Travis – RPS Group 29-Oct-2021

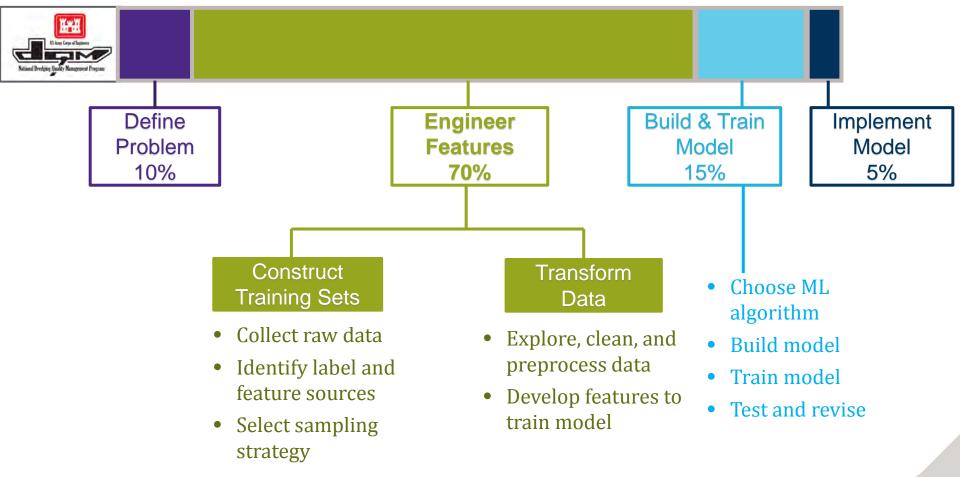
Advances in using machine-learning towards dredging-behavior detection National Dredging Quality Management Program (USACE DQM)

- DQM's mission is to provide the USACE dredging manager with a nationally standardized, remote monitoring and documentation system.
- This system provides the Corps with timely data access, multiple reporting formats, full technical support including dredge certifications, data quality control, database management, and support for the DQM operating system.
- DQM maintains a web-based viewer and underlying database of operational data reported by dredge plants under their monitoring program
 - ► Hoppers
 - ► Scows
 - ▶ Pipeline

- National Artificial Intelligence Initiative Act of 2020 encourages implementation of AI and machine learning (ML) across federal agencies
- Dredging-activity of pipeline plants provided an excellent opportunity for DQM to implement ML methods
- Cutterhead and dustpan type pipelines have distinct behaviors, and need to be modeled separately

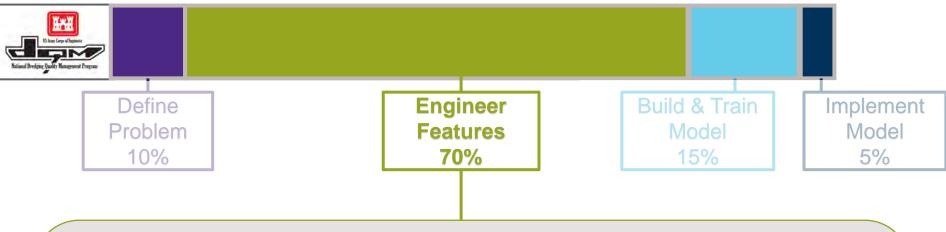


29-Oct-2021



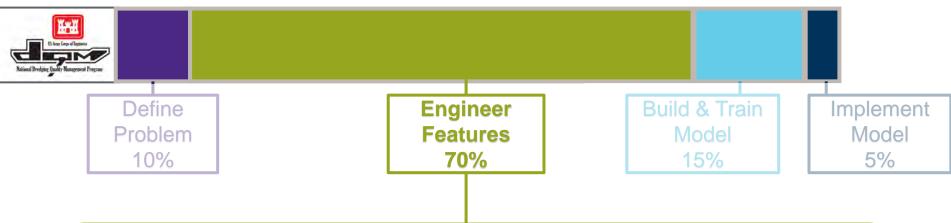
Adapted from: Google ML guides: <u>https://developers.google.com/machine-learning/guides</u>

29-Oct-2021



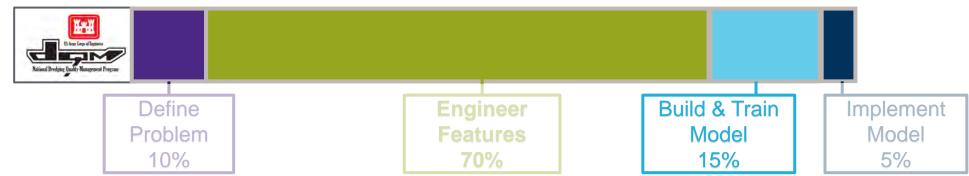
Building Training Sets – Collect raw data:

- DQM began receiving pipeline data in 2019
- RPS assembled datasets and assigned idealized "dredging" activity
 - Cutterhead Data 23 Plants, ~123 Days of Data
 - Dustpan Data 4 Plants, ~45 Days of Data

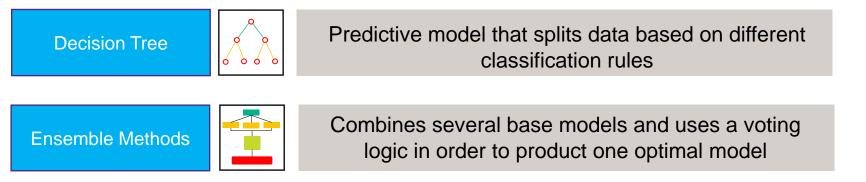


Building Training Sets – Develop Features:

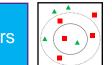
- Include variables that are most indicative of dredging activity
 - Raw data Pump RPM, Slurry Density, Slurry Velocity, Cutterhead/Dustpan Depth, Vacuum and Outlet PSI, Vessel Heading and Speed
 - Calculations from raw data running mean, standard deviation



Choose Machine Learning Algorithm



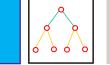
K Nearest Neighbors



Classifies data points based on similarity measure and majority vote to its neighbors

Choose Machine Learning Algorithm

Decision Tree



Predictive model that splits data based on different classification rules

Survival of passengers on the Titanic

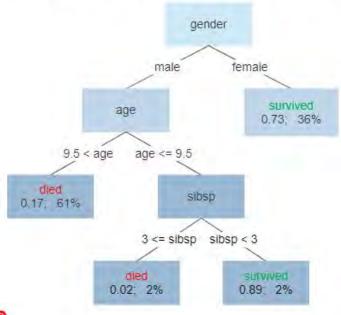
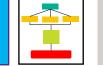


Image taken from: https://en.wikipedia.org/wiki/Decisi on_tree_learning Decision Tree Methods:

- Checks each variable for optimal split point
- Decision is chosen as that with best split
 - Subsequent decisions are limited to data which falls into original decision
- Provides easy-to-understand decisions

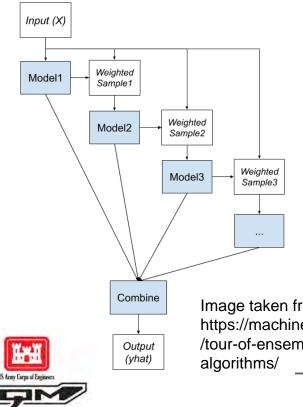
Choose Machine Learning Algorithm

Ensemble Methods



Combines several base models and uses a voting logic in order to product one optimal model

Boosting Ensemble



Ensemble Methods:

- Use multiple decision trees
 - Build an original decision tree
 - Weight new decision trees based upon what was misclassified
 - Ending model uses multiple weighted decision trees for final model build

Image taken from: https://machinelearningmastery.com /tour-of-ensemble-learning-

Choose Machine Learning Algorithm

K Nearest Neighbors

Classifies data points based on similarity measure and majority vote to its neighbors

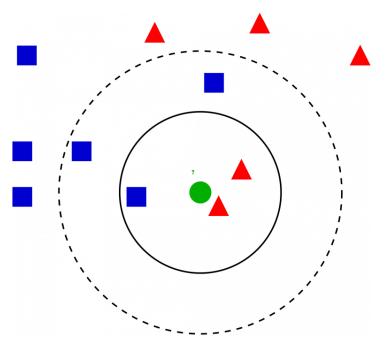
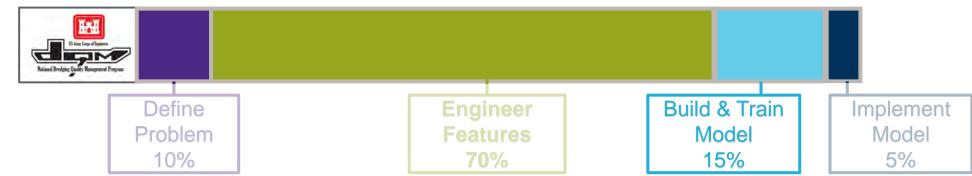


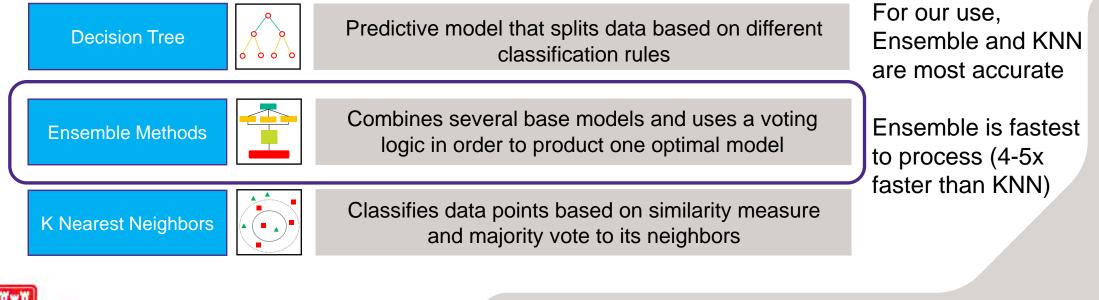
Image taken from: https://www.analyticsvidhya.com/blog/2018/03/intr oduction-k-neighbours-algorithm-clustering/

K-Nearest Neighbor Methods:

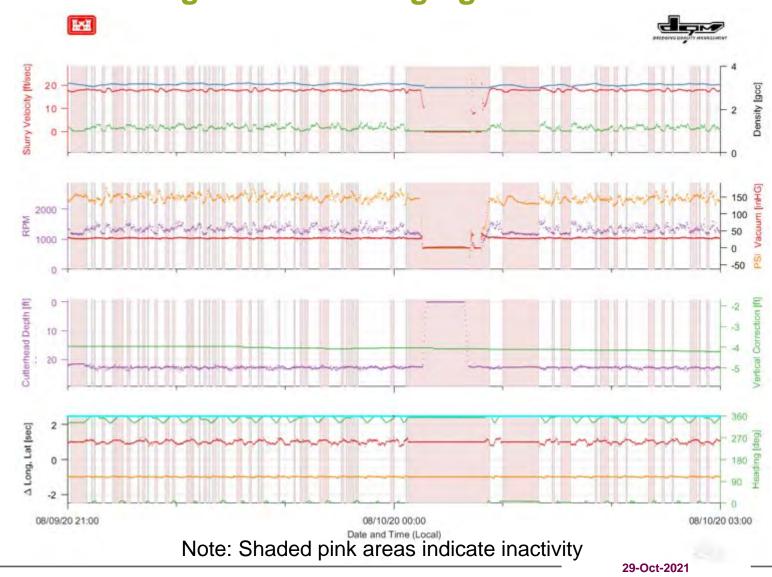
- At any given point, check what is the state of the "nearest" neighbors
- The most common state of the neighbors is ۲ assigned to the point
- K-points refers to the number (k) of • neighbors to check
- Computationally intensive



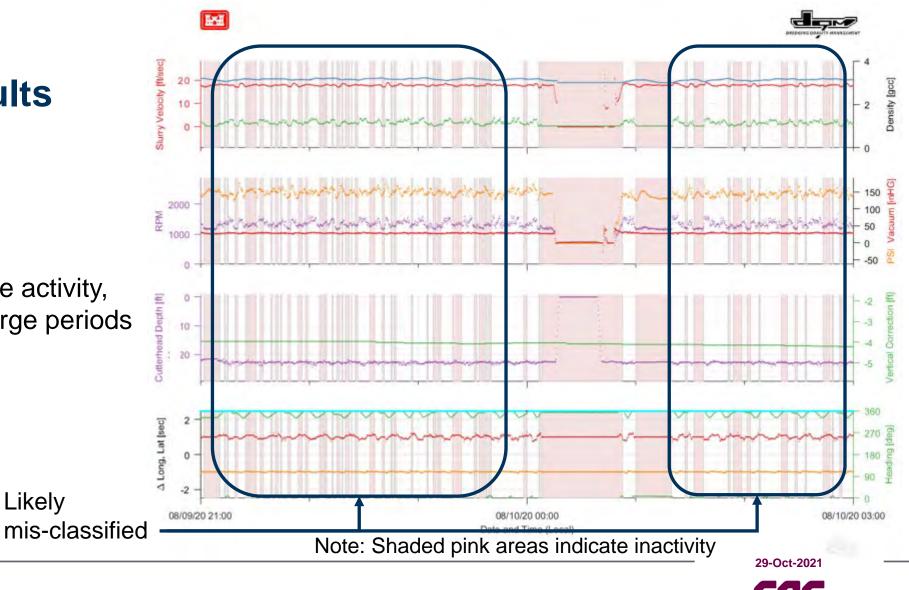
Choose Machine Learning Algorithm

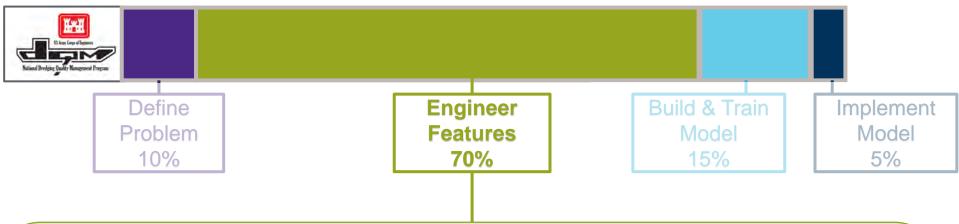


- Initial ML Method
- Raw Input Data



- Initial ML Method
- Raw Input Data
- Identifies moderate activity, but also misses large periods

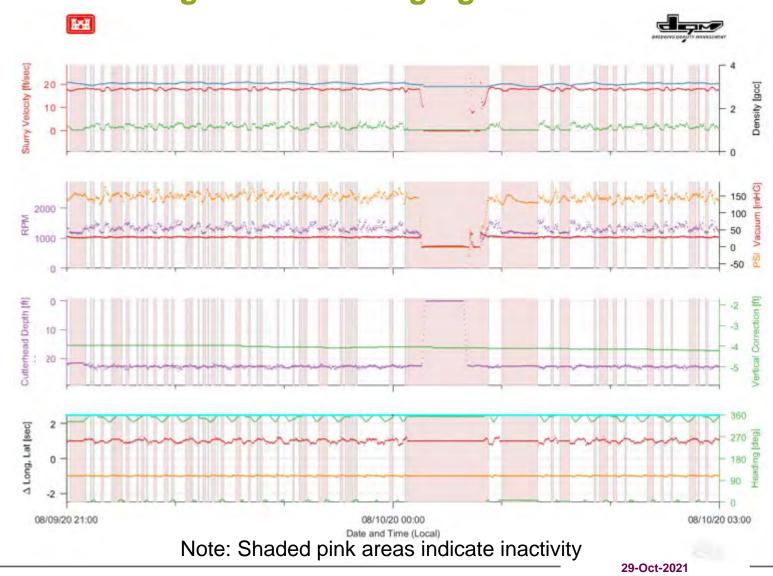




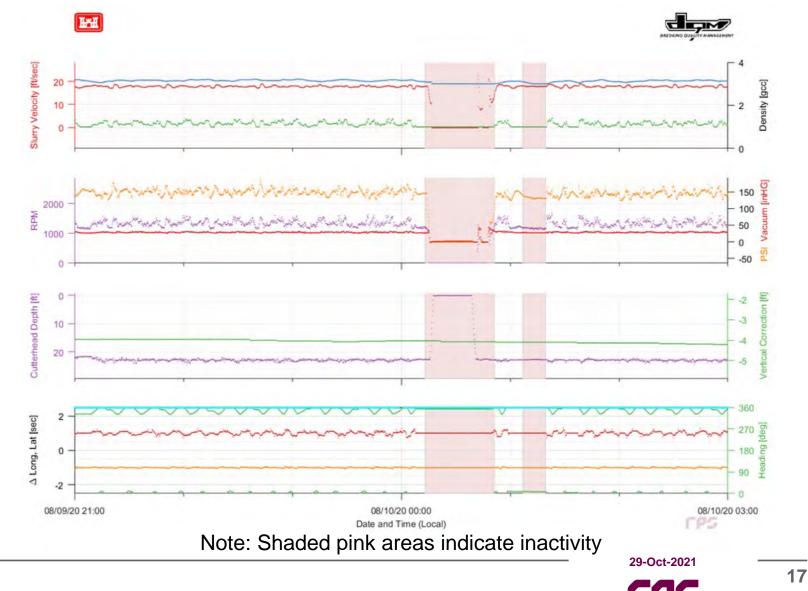
Evaluate and Revise – Develop Features:

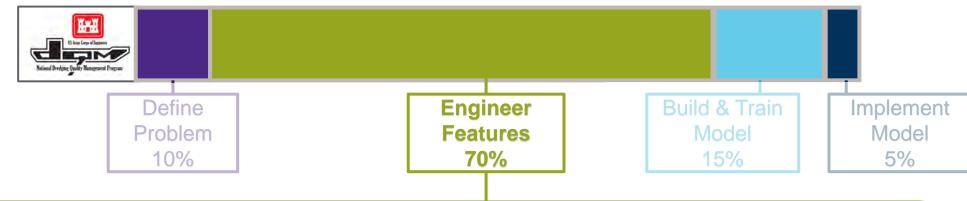
- Expected behaviors and data limits vary by dredge plant
 - Example: max operating depth ranges from ~20 ft to ~60 ft
- By normalizing data by max operating value, we can use a single set of criteria to identify if signal is "on" or "off" across many plants
- New features are created by **normalizing or adjusting** important signals

- Initial ML Method
- Raw Input Data



- Updated ML Method
- Adjusted/Normalized Input Data
- Assignments are much improved



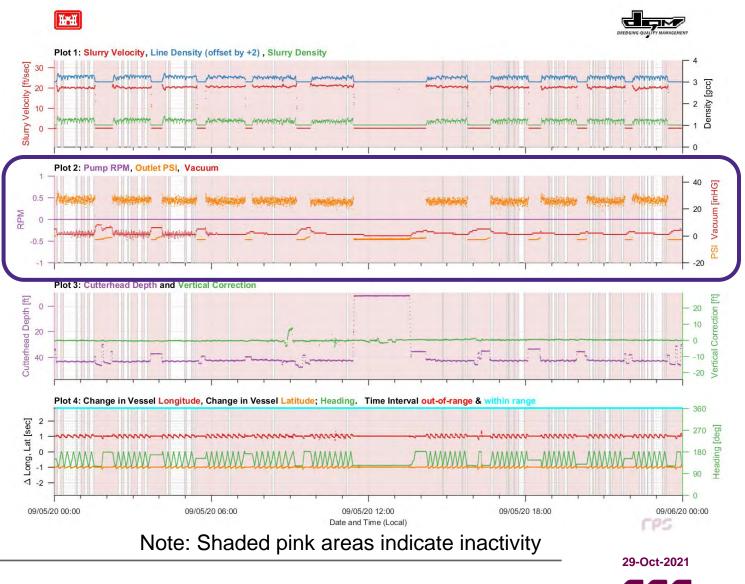


Evaluate and Revise – Develop Features:

- Bad sensor data can impact results
 - ML model assumes all input data is valid bad inputs yield poor model outputs
- Some features are weighted higher in ML model (more significant) than others
- Develop feature verification process to reduce impact of bad data
 - Use same ML model but alter input value(s)
 - Only apply feature verification to most significant variables
 - Only apply feature verification if most other features are valid

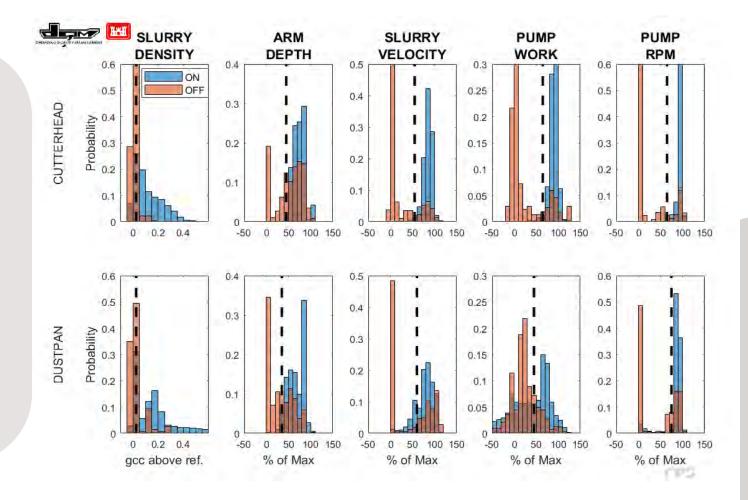
29-Oct-2021

- No Feature Verification
- Pump RPM reporting 0 throughout dataset
- Some areas identified, but majority of activity is missed



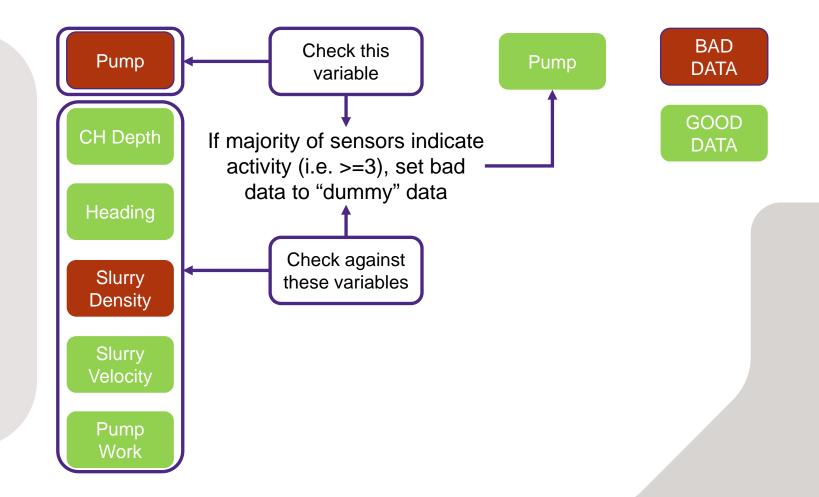
Feature Verification

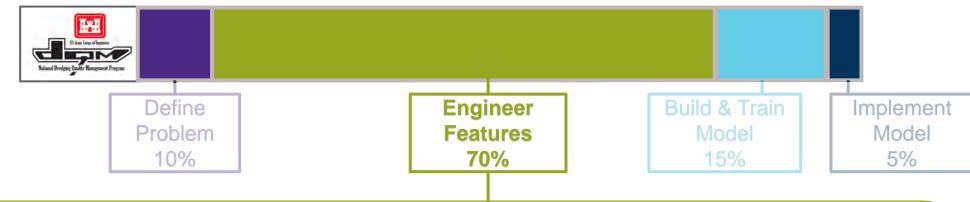
- Find optimal splits for each variable
- Use these splits as thresholds for determining if a variable is "likely good"



Feature Verification

- Example: Cutterhead plant with bad pump data
 - PUMP_RPM_NORM registers as 0 throughout dataset

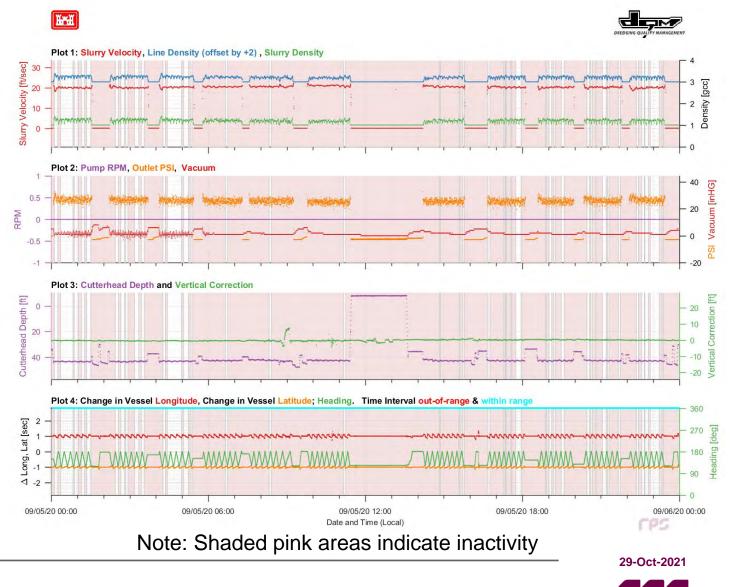




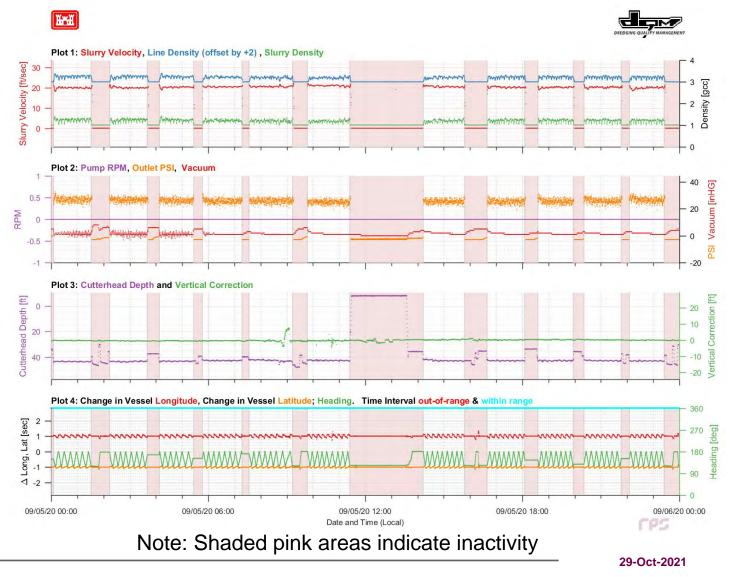
Evaluate and Revise – Feature Verification:

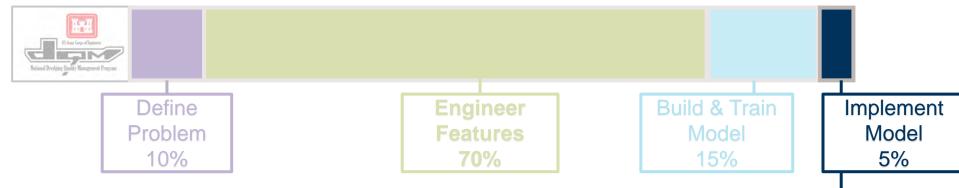
- Can have significant impact when there is questionable data
- By using high threshold criteria, we attempt to only "correct" the worst data
- Limitations:
 - Not intended to work with multiple bad inputs
 - Some variables still are more important to get right than others

- No Feature Verification
- Pump RPM reporting 0 throughout dataset
- Some areas identified, but majority of activity is missed



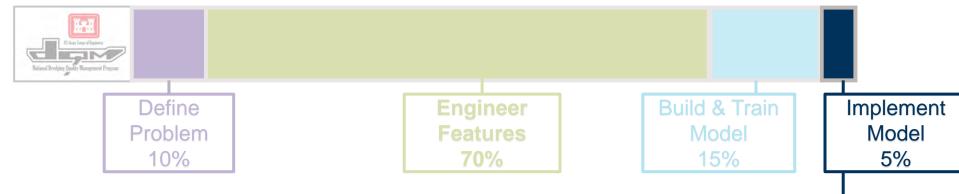
- With Feature Verification
- Pump RPM reporting 0 throughout dataset
- Majority of activity is identified





Summary

- Building training sets for data is the most significant effort in developing machinelearning methods
- Uniform data:
 - Normalizing data allows a single set of criteria to be used for many plants
- High-quality data:
 - Active adjustment of the worst quality data can significantly improve results



Summary

- Machine learning methods have been more effective at assigning dredging/not dredging states than previous analytical methods
 - Previous methods accuracy:
 - 84.4% for cutterhead, 74.7% for dustpan
 - Machine learning method accuracy:
 - 98.7% for cutterhead, 98.0% for dustpan

Comments/Questions?

Seth Travis: seth.travis@rpsgroup.com

rpsgroup.com