

Overview and Planning Considerations

Prepared by Candice D Piercy, Ph.D, P.E. Integrated Ecological Modeling, Environmental Laboratory

Prepared for WEDA Virtual Dredging Summit 2021

16 June 2021

US Army Corps of Engineers

¹⁰⁰

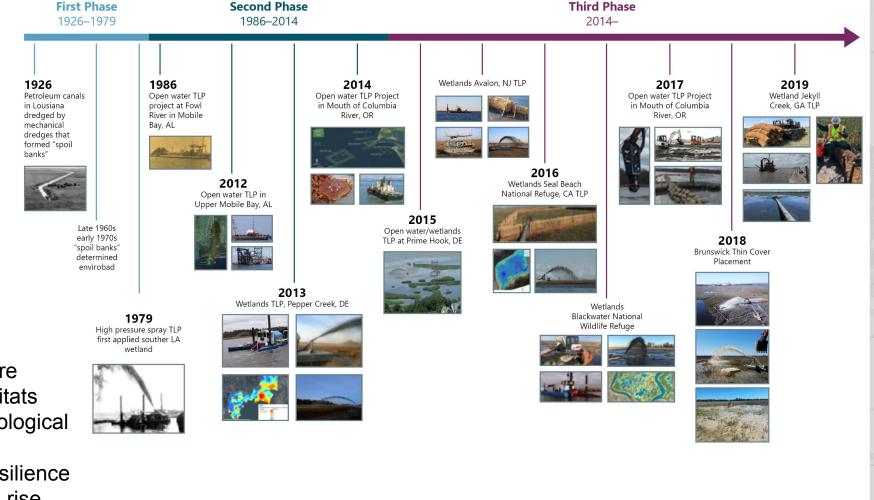
UNCLASSIFED

UNCLASSIFIED

DISCOVER | DEVELOP | DELIVER

Thin layer placement: definitions and history

TLP is "*purposeful* placement of thin layers of sediment (e.g., dredged material) in an *environmentally acceptable* manner to achieve a *target elevation* or *thickness*"


Applications

- Open water
- Wetlands
- Capping

or thickness" s Goals

•

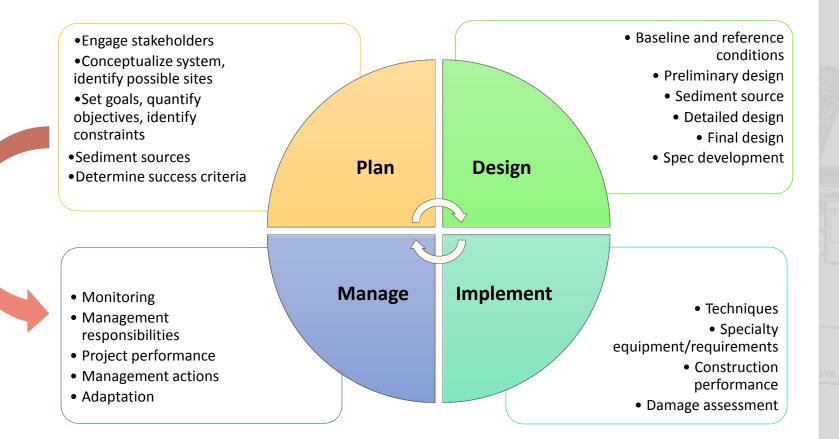
- Support infrastructure
- Create habitats
- Restore ecological function
- Promote resilience
 to sea level rise

2

US Army Corps of Engineers • Engineer Research and Development Center

State-of-practice and a need for guidance

- Recent interest in TLP as an adaptation technique for coastal ecosystems
- Mostly viewed as "pilot projects"
- Cited need for more formal guidance
- 2018 TLP Practitioner Workshop
 - EA Engineering, Science, and Technology Inc. Hunt Valley MD
 - Federal employees, NGOs, consultants, dredging contractors
- Workshop outcomes, scientific literature, project reports, and personal communications combined into TLP Guidance document – expected end of 2021



3

US Army Corps of Engineers • Engineer Research and Development Center

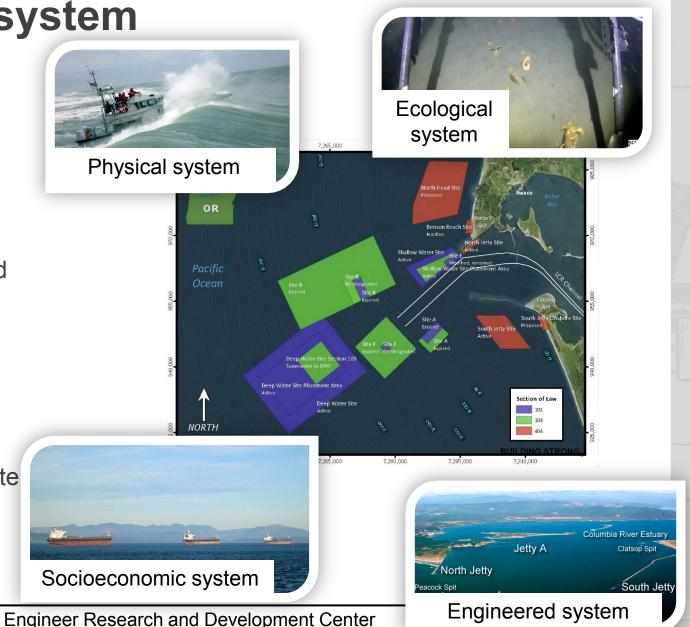
TLP project overview

- Process is similar to routine restoration and dredging projects
- BUT synchronizing two major projects is not easy
- Identified aspects of project management process that are critical to TLP project success

US Army Corps of Engineers • Engineer Research and Development Center

Planning: stakeholder engagement

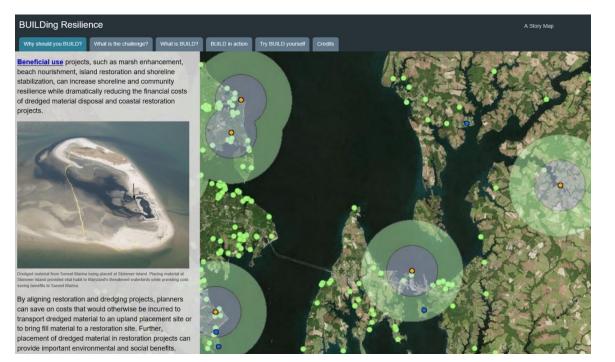
- TLP projects involve large and diverse groups of stakeholders
- Engage EARLY and OFTEN
- Establish common vocabulary
- Communication and education diverse stakeholders mean diverse backgrounds
- Bring in regulators early too!


•	Alabama State Port Authority (ASPA)	•	U.S. Fish and Wildlife Service (USFWS)	
•	USACE, Mobile District	•	National Marine Fisheries Service (NMFS), Habitat	
	USACE, Engineering Research and Development Center		Conservation	
	(ERDC)		Mobile Bay National Estuary Program (NEP)	
	Alabama Department of Conservation and Natural Resources (ADCNR), State Lands Division	•	U.S. Environmental Protection Agency (EPA)	
	ADCNR, Marine Resources Division (MRD)	Dauphin Island Sea Lab (DISL)		
	ADCNR, Wildlife and Freshwater Fisheries Division (WAFF)		The Nature Conservancy (TNC)	
		•	Mobile County Environmental Department	
	Alabama Department of Environmental Management (ADEM)	•	Mobile Bay Keeper	
	Geological Survey of Alabama (GSA)			
owe	er Columbia Solutions Group			
	National Oceanic and Atmosphere Administration (NOAA)	•	Oregon Department of Environmental Quality (ODEQ)	
	U.S. Environmental Protection Agency (EPA)	•	Port of Astoria	
	Oregon Governor's Office	•	Port of Ilwaco	
	Washington Governor's Office	•	Port of Chinook	
	WA Department of Ecology (WDOE)	•	Pacific County, Washington	
	Columbia River Crab Fishers Association (CRCFA)	•	Clatsop County, Oregon	
	Washington Department of Natural Resources (WDNR)	•	Oregon Department of State Lands (ODSL)	
	Oregon Department of Land Conservation and	•	USFWS	
	Development	•	Oregon Department of Fish and Wildlife (ODFW)	
	Oregon Sea Grant	•	Washington Department of Fish & Wildlife (WDFW)	
	Portland State University	•	Lower Columbia Solutions Group	
	Oregon State University	•	Institute for Natural Resources	
	Oregon Health Sciences University	•	Center for Public Service	
	National Policy Consensus Center			
	National Policy Consensus Center			

5

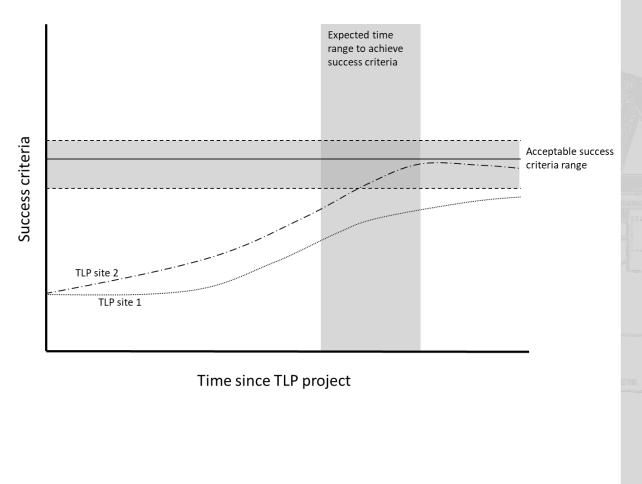
Planning: understand the system

- Physical system: Geomorphology of the sites, water levels, currents, tides, and sediment transport
- Ecological system: Biophysical feedbacks between vegetation and water levels and faunal use (especially benthic fauna)
- Socioeconomic system: Ecosystem goods and services provided by wetlands and marine and estuarine waters
- Engineered system: Alterations in site hydrodynamics from structures or stormwater inflows from adjacent developed lands
- Regulatory and governance system: The special laws and policies that protect and regulate activities occurring on wetlands and in aquatic habitats.


US Army Corps of Engineers •

Planning: identify sediment sources

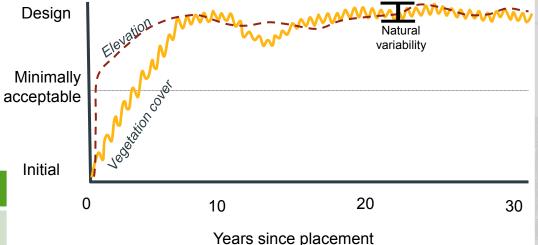
Sources:


- navigation channels (maintenance dredging or new work),
- confined disposal facilities,
- borrow areas
- Transport distance and method
 - Small hydraulic pipeline dredges most commonly used
 - Hopper dredges (common on west coast) may require additional equipment and rehandling
- Sediment grain size not as critical as you might think!
- Do dredging and placement windows align?
- Background contaminant levels at site and in sediment

Planning: setting goals and objectives

- Project goal: restore a degraded marsh to a state that provides nesting and grazing habitat for migratory birds
- Project objectives: 75% high marsh and less than 10% open water based on optimal habitat requirements for a nesting bird
- Methods: Determine if TLP is appropriate method to achieve objectives, are other techniques required too?
- Project constraints: site and project-specific; budgetary, regulatory, equipment access, for example
- Success metrics:
 - As-built metrics
 - Site function metrics
- Time to recovery dependent on site, project scope and scale; be realistic!

US Army Corps of Engineers • Engineer Research and Development Center

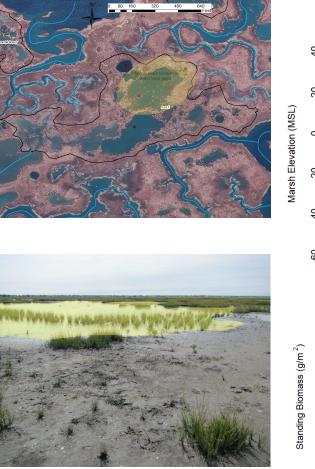


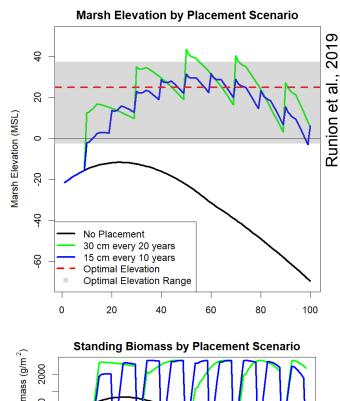
8

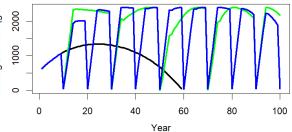
Management: quantify success and monitoring

Example monitoring metrics for wetland TLP project

Metric Type	Metric	Method	Purpose
Geometry	Elevation	RTK survey Ground-based LiDAR Surface elevation table	Determine rate of elevation change after TLP
Hydro-	Wave conditions	Wave gages	Determine if wave conditions have changed due to TLP
dynamic properties	Water levels	Water level loggers	Determine if inundation duration of marsh surface has decreased
Sediment/	Salinity	Conductivity probe	Determine if porewater salinity levels allow planting
soil	Bulk density	Soil cores	Determine if sediment has consolidated enough to support plant roots
properties	рН	pH/EC probe of soil/sediment slurry	Detect reduction in porewater pH from acid sulfide production
Ecological	Vegetation abundance	Percent cover Aboveground biomass Belowground biomass	Determine if vegetation recovery is occurring, determine if planting is necessary
properties	Macroinvertebrate abundance	Benthic invertebrate sampling Acoustic tagging	Determine if TLP caused invertebrate mortality, determine if benthic community is recovering

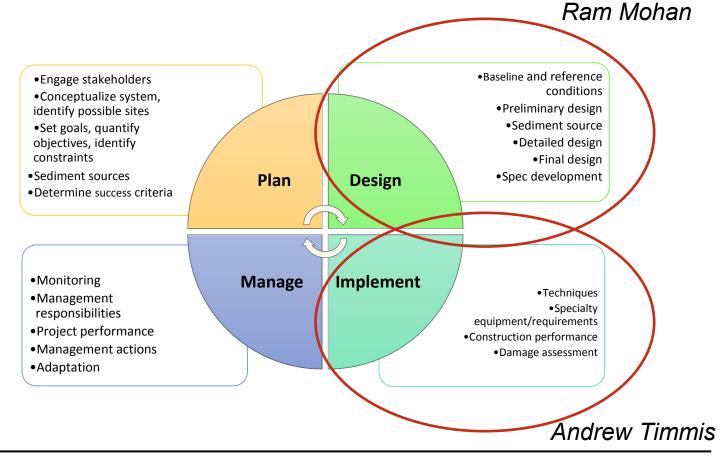

- Monitoring plans should reflect the site expected development timeline
- Ecological functions will take longer to reach acceptable levels than physical
- Some reduction in function is expected after TLP
- First year after TLP should be considered Year 0 even if placement occurs in winter


9


US Army Corps of Engineers • Engineer Research and Development Center

Management: maintenance and adaptation

- For many projects, TLP is not one and done!
- For thicker lifts, may need to return to add additional sediment due to consolidation effects
 - Plan for multi-year projects
 - May not be realistic for areas requiring thicker lifts to reach thickness or elevation targets after one placement
- For intertidal habitats, plan for sea level rise
- Determine relative elevation that would require planning for the next TLP event
- For wetlands, degradation can take many trajectories
 - High marsh \rightarrow Low marsh \rightarrow Open water
 - Fragmentation: open water areas increase in area


10

US Army Corps of Engineers • Engineer Research and Development Center

Questions?

11

US Army Corps of Engineers • Engineer Research and Development Center