

RIVER REMEDIATION CASE STUDY:

CAPTURING PCBs FROM IMPACTED SLURRY VIA SEPARATION AND WATER TREATMENT

CLEAN WATER SOLUTIONS

About IAI

- Founded in 2000
- Based in Rockford, Michigan
- Small business, employee-owned
- Approx. 100 employees
- Water & wastewater treatment
- Dredging & Sediment Dewatering Division

Key Topics

- Project overview and site layout
- Water treatment process flow adaptability
- Benefits of geotextile tubes for water treatment
- Contamination removal rates by process
- Water treatment plant operational techniques

Project Overview

- 7.2 mile stretch of navigable waterway
- PCB impacted
- Mechanically dredged
- 2019 Work

Project Overview

- Water based operations
 - Mechanical dredging
 - Dredged material transport

- Land based operations
 - Hopper barge offloading
 - Amendment of impacted sediment for disposal
 - Treatment of impacted slurry for discharge

Sources of Impacted Slurry Flow

- Surface water mixing with impacted sediment in hopper barges
- Waste water from wash and decontamination processes
- Precipitation

Unanticipated Flow of Impacted Slurry

- Higher volumes of water in hopper barges
 - Increased water flow to WTP
- Minimization of slurry to amendment process
 - Increased solids flow to WTP
- Size of collection sump not ideal for increased flows
 - Decreased ability for solids settling

Original Anticipated Flow

150 GPM to WTP

• 2-4% solids content by weight

Realized Process Flow

• 350 GPM to WTP

8-12% solids content by weight

Original WTP Processes

- Impacted slurry
- Collection sump
- Geotextile tube
- Settling sump
- Influent holding tanks

- Lamella clarifier w coagulant
- Sand filter vessels
- Bag filter vessels
- GAC adsorption vessels
- Effluent holding tanks

New WTP Processes

- Impacted slurry
- Collection sump
- Geotextile tubes
- Settling sump w coagulant
- Influent holding tanks used for clarification

• Lamella clarifier w coagulant

- Sand filter vessels x2
- Bag filter vessels x2
- GAC adsorption vessels x2
- Effluent holding tanks

- Collection Sump
 - Weir system
 - Floating suction line
 - Mechanical removal of settled solids

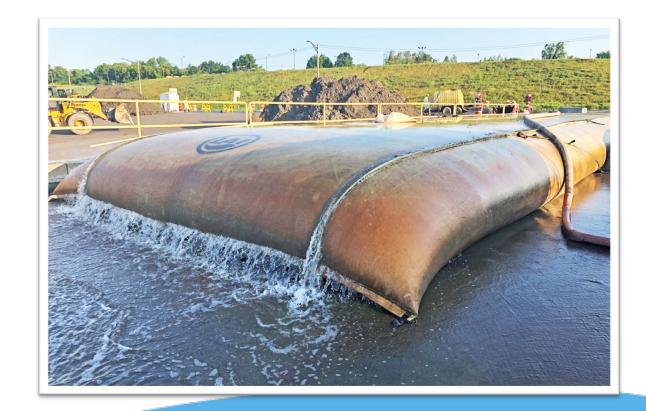
- Collection Sump
 - Weir system
 - Floating suction line
 - Mechanical removal of settled solids

June 15, 2021

- Geotextile tubes
 - 3 tubes used concurrently
 - Unique sizes
 - Selective filling cycles
 - Selective dewatering cycles

- Settling and clarification processes
 - Altered plumbing of influent holding tanks
 - New coagulant injection points
 - Clarification via original lamella recognized as unnecessary
 - Selective pumping

- Filtration and adsorption processes
 - 2nd treatment train with same processes installed
 - Operate independently and simultaneously
 - Concurrent treatment and backwash



Benefits of Geotextile Tubes

- Equalization point in flow process
- Low maintenance with proper chemical dosing
- Ability to capture wide range of material

Benefits of Geotextile Tubes

- Cost effective
 - Often no amendment
- Protection for sensitive equipment
- Safely contain contaminated material

Compliance Monitoring

- Direct discharge to pre-existing water treatment facility
 - Regulated under SPDES permit program
- Continuous discharge
 - Batch discharge for first 60,000 gallons

Compliance Monitoring

- Effluent samples collected for analysis weekly
 - Discharge criteria established by project specification
 - TSS limit 20 mg/L
 - Total PCBs limit 3 µg/L
- Discharge criteria met throughout this work
- Zero effluent samples with detectable concentrations of PCBs

Process Control Monitoring

- Samples collected bi-monthly
 - Geotextile tube slurry (TSS, PCBs)
 - Geotextile tube filtrate (TSS, PCBs)
 - Multimedia filter effluent (TSS)
 - Bag filter effluent (TSS)
 - Lead GAC effluent (PCBs)
- Provides individual process performance insight
- Allows for trends to develop

- Geotextile tube filtration
 - Available TSS removal rate ~ 99%
 - Available PCB removal rate ~ 58%
- Suggests PCBs affinity for solids

	Process Influent	Process Effluent
Avg. TSS conc. (mg/L)	71,000	23
Avg. PCB conc. (µg/L)	2.26	.946

- Clarification
 - Available TSS removal rate ~ 30%
- Resuspension of settled solids a factor
 - Lack of ability to capture settled solids

	Process Influent	Process Effluent
Avg. TSS conc. (mg/L)	23	16

- Multimedia filtration
 - Available TSS removal rate ~ 100%
 - Method reporting limit of 1.0 mg/L

	Process Influent	Process Effluent
Avg. TSS conc. (mg/L)	16	<1.0

• Bag filtration

- Available TSS removal rate ~ negligible
- Not uncommon for higher effluent turbidity
- Prevent potential GAC fouling

	Process Influent	Process Effluent
Avg. TSS conc. (mg/L)	<1.0	<1.0

- Granular Activated Carbon (GAC) adsorption
 - Lead GAC primary adsorber
 - Lag GAC safety measure

	WTP Influent	WTP Effluent
Avg. PCB conc. (µg/L)	0.946	0.023

Operational Techniques

- Plan for unexpected occurrences
 - Unanticipated flows
 - Changes to key operations
 - Unusual weather events
- Add flexibility where possible
 - Equalization points
 - Efficient use of space
 - Additional workers during critical times

Operational Techniques

- Process control monitoring
 - Laboratory analysis
 - Create own schedule
 - Water quality
 - Hourly turbidity and pH measurements
 - Water treatment processes
 - Pressure vessel differential checks
 - Frequent slurry floc checks

Operational Techniques

- Operator responsibilities
 - Thoroughly understand design capabilities
 - Power requirements, min/max flows and pressures
 - Maintenance based on manufacturer recommendation at minimum
 - Constant visual and auditory observations
 - Know intricacies of entire project

QUESTIONS?

Contact:

Connor McNeely, Chemist

cmcneely@iaiwater.com

616-916-1160