

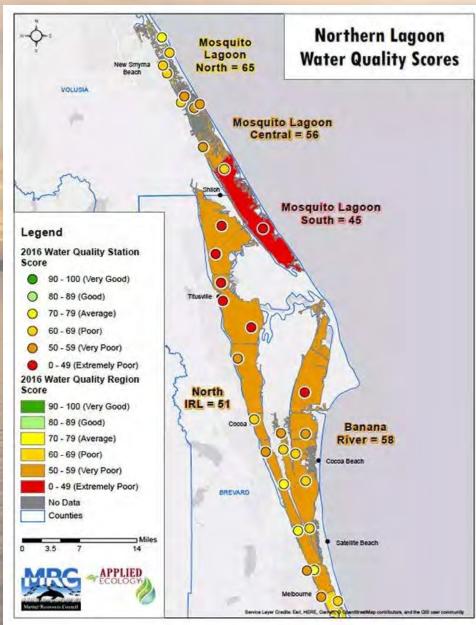
Determining the Effectiveness of Ferrate-Treated Slurry Precipitate as a Soil Conditioner

Leigh Ann Provost (Engineer Research and Development Center) Dr. Robert J. Weaver (Florida Institute of Technology) Dr. Thomas D. Waite (Florida Institute of Technology)

The Indian River Lagoon

≻156 mile long estuary spanning 7 counties

Home to over 2000 species of both plants and animals


Roughly \$30 Million in annual revenue generated from fisheries (SJRWMD, 2018)

➢Annual economic value of ~\$7.6 Billion (SJRWMD, 2018)

(St. Johns River Water Management District, 2007)

A Mucked Up Situation

Miami Herald, 2016

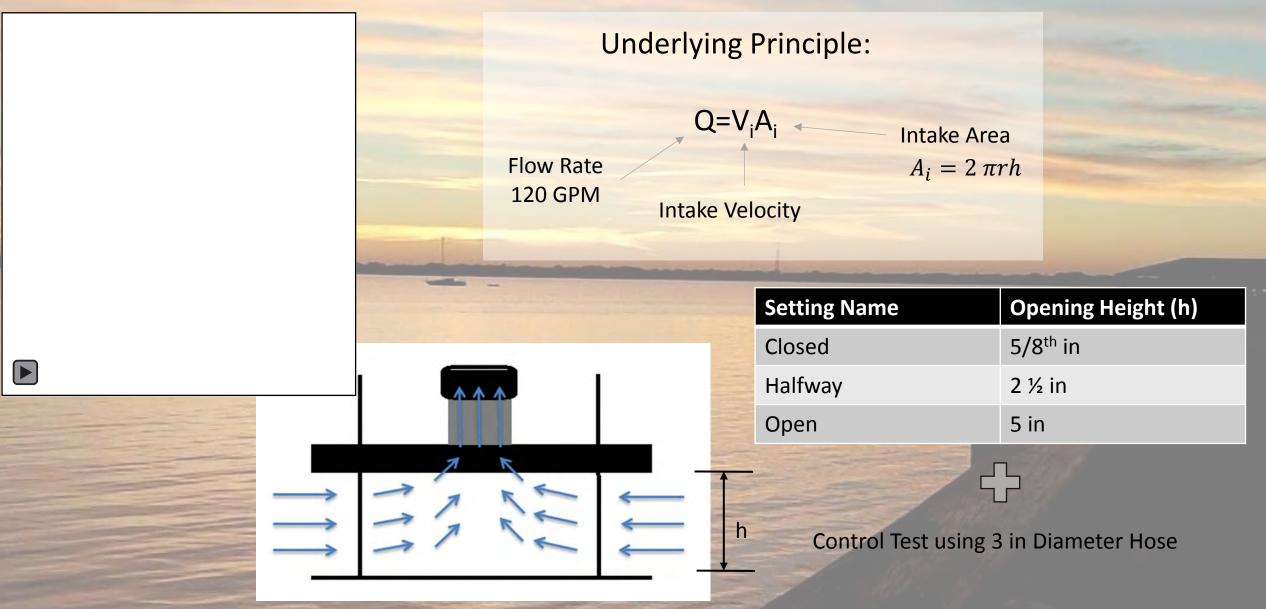
 ~5 Million yd³ of muck cover the Northern and Central parts of the IRL (Trefry, 2016)

 Muck is between 10-20% organic material and 60-80% clays, silts and fine sands when dry (Trefry, 2016)

Scope of Work

Objective Develop and test Ferrate- based coupled dredge- spoil residuals treatment system

Project Metrics


Can a dredge which effectively precludes coarse sediments larger than 0.2mm be developed

Can ferrate treatment reduce phosphorous concentrations, as well as ammonia and suspended solids

Can an efficient disposal method for solids be established

Funded By: State of Florida Department Environmental Protection, Natural Resources Management Department, Brevard County, FL

Approach: Dredge Head Design

Lab Testing Dredge Head

Settlement Issues

Settled Slurry Sample

	Time (min)	Level of	Net settling (mL)
Poor		suspended particles (mL)	
water	0	2020	0
quality	16	1940	80
	30	1900	40
- starting long	45	1820	80
	60	1700	120
	75	1625	75
Settled	90	1590	35
Material	105	1555	35
	120	1530	25
	135	1500	30
	168	1460	40

Ferrate Synthesis

 $2FeCl_3 + 3NaOCl + 10NaOH \rightarrow 2Na_2FeO_4 + 9NaCl + 5H_2O$

$2FeO_4^{2-} + 5H_2O \rightarrow 2Fe(OH)_3 + 1.5O_2 + 4OH^{-1}$

(Waite, 2012)

Ferrate is added to water sample and mixed

Acid is added to sample and mixed to neutralize pH The sample is given time to settle (minutes rather than hours)

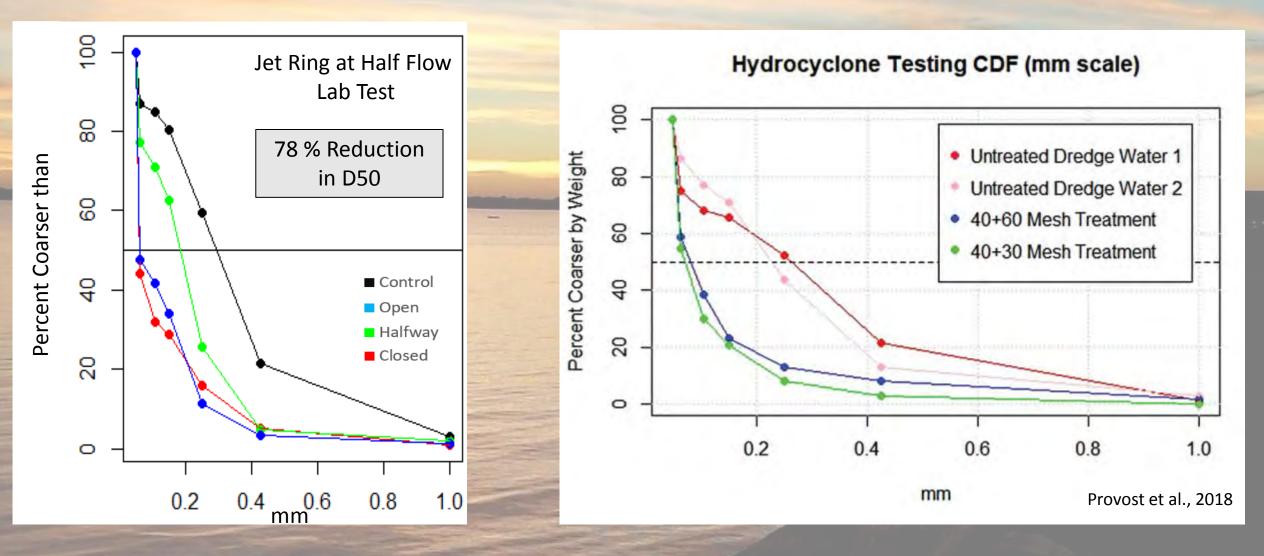
Coupled Slurry Treatment System

Λ

Treatment Trailer Phases:

- 1. Dual Hydrocyclones (particle separation)
- 2. Ferrate Injection+mixing (Coagulating agent)
- 3. Acid Injection +mixing (pH Control)
- 4. Settling (fine particulate separation)

Field Testing Site



Melbourne-Tillman, 2018



Results: Grain Size Reduction

Sediment analysis performed used 7 different sieve sizes to generate CDF curves

Results: Water Quality Improvement

Provost et al., 2018

Percent Reduction in Nutrients from untreated slurry to hydrocyclone treated (Provost et al., 2018)

	Ammonium	Phosphate
40 + 30 Mesh Treatment	28.94%	37.19%
40 + 60 Mesh Treatment	21.82%	57.64%

	NH4-N	NO ₃ -N	PO ₄ -P	Fe(TOTAL)	Turbidity
	mg/L	mg/L	mg/L	mg/L	NTU
Control	0.49	1.25	0.33	>3.0	245
Treated	<0.18 (BDL)	1.43	0.03	0.31	0.41
% Change	(-)>65	(+) 1	(-) 90	(-)>90	(-) 99.8

Soil Conditioning Capability

Iron and nutrient content of precipitate allows for potential as a soil conditioner

Planting and Treatment
(Provost et al.,2018):
◆ 80 pepper seeds

planted total (40
control, 40 treated)

◆ 4mL of ferric-phosphate

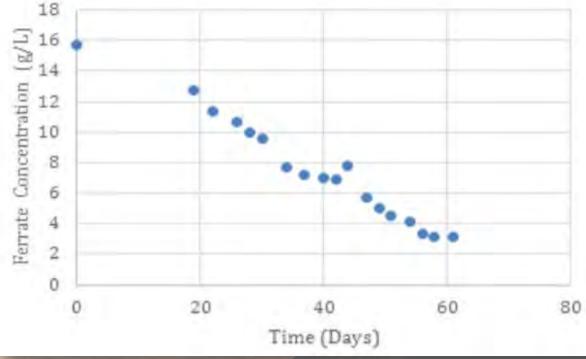
treatment bi-weekly
◆ 0.22 mg of iron and
0.05 mg of OP

Soil Conditioning Capability

	Control Group	Test Group
Germination	80%	85%
Production	5 Peppers	9 Peppers

Provost et al., 2018

Soil Conditioning Feasibility


Pros

- Ferrate cost can be reduced from \$60/lb to \$5/lb when produced on site (Waite, 2012)
- ~\$0.3/lb to remove N+P+TSS (Waite, 2012)
- Coupled system lessens slurry disposal volumes

Cons

- Stability
 - Storage
- Potential environmental risks?

Ferrate Concentration vs. Time *-6°C

Weaver et al., 2018

Thank you!

Florida Legislature Brevard County Natural Resources Management Department Brevard County, FL Melbourne-Tillman Water Control District Indian River Lagoon Research Institute Florida Institute of Technology

References

- Marine Resources Council. (n.d.). *Step 4: Sharing Results Marine Resources Council*. [online] Available at: https://savetheirl.org/irl-health-update/sharing-results/ [Accessed 9 Sep. 2018].
- miamiherald. (2016). Massive fish kill makes Florida water emergency difficult to ignore. [online] Available at: https://www.miamiherald.com/news/local/news-columns-blogs/fred-grimm/article69081862.html [Accessed 1 Sep. 2018].
- Trefry, J. (2016). Running Amuck: Our Six-Decade Legacy to the Indian River Lagoon, lecture, FAU Harbor Branch Ocean Lecture Series, delivered 11 May 2016.
- Weaver, R., Waite, T., Grisanti, H, & Provost, L. 2018. Feasibility of Muck Removal in the IRL Watershed and Subsequent Ferrate Treatment to Remove Excess Nutrients. Melbourne: Florida Institute of Technology. Brevard County Natural Resources Management Department
- Provost, L.A., Waite, T.D., Weaver, R.J., and Grisanti, H.C., 2018. 'Fabrication and Testing of a Variable Area Dredge Coupled with an Inline Slurry Treatment System', Marine Technology Society, 52 (4).
- Melbourne-Tillman Water Control District. 2018. Melbourne-Tillman Water Control District Boundary and Canals. [online] Available at: http://www.melbournetillman.org/. Date of Access: 08/04/2018.
- SJRWMD. 2018. The Indian River Lagoon– SJRWMD. [online] Available at: https://www.sjrwmd.com/waterways/indian-river-lagoon/. St. Johns River Water Management District, Indian River Lagoon National Estuary Program. (2007). Indian River Lagoon: An Introduction to a Natural Treasure. [online] Available at:
- https://www.epa.gov/sites/production/files/201801/documents/58692_an_river_lagoon_an_introduction_to_a_natural_treasure_2 007.pdf Waite, T. 2012. On-Site Production of Ferrate for Water and Wastewater Purification. Available at:
- https://www.americanlaboratory.com/914-Application-Notes/125788- On-Site-Production-of-Ferrate-for-Water-and-Wastewater-Purification/