# ANALYSIS OF MICROPLASTICS IN BOTTOM SEDIMENTS FROM USA WATERWAYS

J. L. Wilkens\*, B. C. Suedel, K. L. Pokrzywinski, B. N. Stevens, M. L. Ballentine, J. J. LeMonte, and E. B. Bergeaux

Research Biologist

**Environmental Laboratory** 

Engineer Research and Development Center

#### WEDA PACIFIC CHAPTER

October 23-25, 2018









## WHAT IS A MICROPLASTIC?

< 5 mm

Microplastics are small pieces of plastic < 5 mm

Large microplastics (1-5 mm)

S Small microplastics (1 µm-1 mm)



Photo by Dustan Woodhouse on Unsplash

## WHAT IS A MICROPLASTIC?

01

#### **Primary microplastics**

Specifically engineered for various applications such as personal care products. Can be in the form of preproduction pellets.



Photo by Parks Canada

02

#### **Secondary microplastics**

Plastics resulting from degradation of macroplastics caused by various reasons (i.e., UV radiation, abrasion, degradation)



Photo by NOAA

## WHY?

- 1) Microplastics are 'emerging contaminants'.
- 2) Microplastics are ubiquitous.
- 3) Bioaccumulation potential increases with decreasing size = widespread risk of exposure.
- 4) Many studies have shown marine organisms have been affected by microplastics.

## STUDY QUESTION

Do microplastics found in federal navigation channel sediments occur at a greater abundance than other similar environments?



#### **OBJECTIVES:**

- 1) To measure the occurrence and abundance of microplastics in sediments collected from several federal navigation channels.
- 2) To compare the abundance of microplastics in federal navigation channel sediments with the abundance of microplastics found in other sediments in the USA and world.



US Army Corps of Engineers • Engineer Research and Development Center

## **EXTRACTION METHODS**

Extraction of microplastics using density separation followed by wet peroxide











#### **METHODS**

#### PLASTIC IDENTIFICATION

- Microplastics were identified under the stereo microscope (x40)
- Physical properties (e.g., texture, flexibility)
- Visual inspection by low-powered microscopy accepted



## **METHODS**

Microplastics can be categorized into broad categories including: fibers, films, foams, fragments, spheres



<sup>\*</sup>most common

## LITERATURE REVIEW



Articles containing 'microplastics' and 'sediment'.

## Focused 02

Microplastics in subtidal zone sediments and inland sediments.

Excluded

Coastal and inland beach sediments (less representative of dredged sediments).



Photo by Javardh on Unsplash











#### **RESULTS:** Selection of microplastics in marine and freshwater sediments.

#### **Europe**

|                   | <del>-</del>            |                       |
|-------------------|-------------------------|-----------------------|
|                   | Number of particles     |                       |
| Location          | $(\overline{x} \pm SD)$ | Reference             |
| Gulf of Cadiz     | 75 ± 98 kg dry          | Frias et al. 2016     |
| Baltic Sea        | 22 ± 5 kg dry           | Graca et al. 2017     |
| Mediterranean Sea | 270 ± 313 kg dry        | Alomar et al 2016     |
| English Channel   | 59 ± 36 kg dry          | Thompson et al. 2004* |
| Lagoon of Venice  | 1,445 ± 458 kg dry      | Vianello et al. 2013  |
| North Sea         | 167 ± 92 kg dry         | Claessens et al. 2011 |
| North Sea         | 48 kg dry               | Karlsson et al. 2017  |
| North Sea         | 2,460 ± 1,493 kg dry    | Leslie et al. 2017    |
| Telaščica Bay     | 178 ± 122 kg dry        | Blaskovic et al. 2017 |
| R. Rhine, Main    | 904 ± 1,064 kg dry      | Klein et al. 2015     |
| urban canal       | 2,071 ± 4,146 kg dry    | Leslie et al. 2017    |
| R. Thames trib.   | 350 ± 216 kg dry        | Horton et al 2017     |
|                   |                         |                       |

#### **North America**

| Location                     | Number of particles $(\overline{x} \pm SD)$ | Reference                   |
|------------------------------|---------------------------------------------|-----------------------------|
| Lake Ontario                 | 352 ± 374 kg dry                            | Corcoran et al. 2015        |
| Lake Ontario                 | 921 ± 1,072 kg dry                          | Ballent et al. 2016         |
| Ottawa R.                    | 220 kg dry                                  | Vermaire et al. 2017        |
| St Lawrence R.               | 13,759 ± 13,685 m <sup>2</sup>              | Castañeda et al. 2014       |
| Maine coast                  | 105 Liter                                   | Graham and Thompson<br>2009 |
| Florida coast<br>(Atl. O.)   | 214 Liter                                   | Graham and Thompson<br>2009 |
| Florida coast<br>(Glf. Mex.) | 116 Liter                                   | Graham and Thompson<br>2009 |



## **SUMMARY**

#### **OBJECTIVE 1: Microplastic abundance**

- Overall average number of particles in the federal navigation channels sampled was 1,611 ± 1,309 kg dw sediment (range 217-5,019).
- Microplastics occurred in every sample.
- Fibers and fragments were the dominant particle type followed by spheres.

#### **OBJECTIVE 2: Literature Review**

Overall average number of particles....

- coastal waters: 1,098 ± 1,804 (range 22-7,960)
- inland waters: 1,062 ± 1,941 (range 82-7,228)
- Several authors have found that abundances of microplastics was highest in harbors as compared to beach sediments and other subtidal areas.

#### PRELIMINARY CONCLUSIONS

#### MICROPLASTICS IN FEDERAL NAVIGATION CHANNELS

 These data represent the first sediment microplastic concentrations for federal navigation channels. This study provides evidence that microplastics should be expected in dredged sediment.

#### **PATH FORWARD**

- A statistical analysis of microplastics in bottom sediments.
- Fourier-transform infrared (FT-IR) will be used for quality control.
- ERDC has developed capabilities to extract and identify microplastics (< 5mm) to support USACE District dredge projects where microplastics may be of concern.

#### **ACKNOWLEDGEMENTS**

#### Thanks to

Thanks to our ERDC teammates for providing sediments.

#### This research was funded by



U.S. Army Corps of Engineers, U.S. Army Engineer Research and Development Center, Dredging Operations and Environmental Research Program, Todd Bridges, Director. <a href="https://doer.el.erdc.dren.mil/">https://doer.el.erdc.dren.mil/</a>



Research fact sheet available at:

https://doer.el.erdc.dren.mil/factSheets.html