

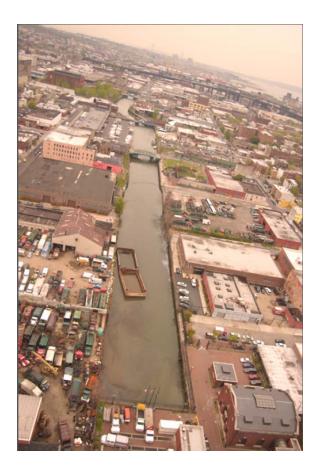
Gowanus Canal – Sediment Treatment and Beneficial Use

Geosyntec[▷] consultants

J. Fears, R. Hyatt, D. Nicholas, J. Gasser, J. Brinkman WEDA Dredging Summit & Expo '18

Presentation Preview

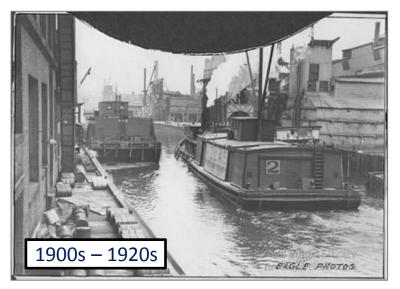
- Gowanus Canal Brief History and Background
- Major Remedial Design Components
- Sediment Treatability Study & Results
- Pilot Study Sediment Processing Operations
- Conclusions & Considerations

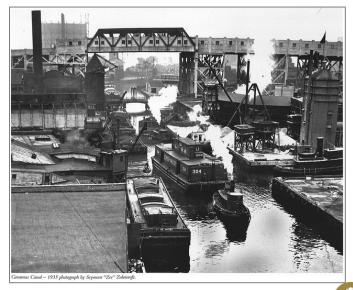

Geosyntec^o

Gowanus Canal – Brooklyn, NY

Union Street Bridge Queens Bridge Turning Basin RTA1 RTA 2 Brooklyn 3 Street Bridge th Street Turning Basin 9 Street **6th Street Turning Basin** Bridge 7th Street Turning Basin Former 5th Street Turning Basin 11th Street Turning Basin Hamiltion Avenue Bridge RTA 3A RTA 3B

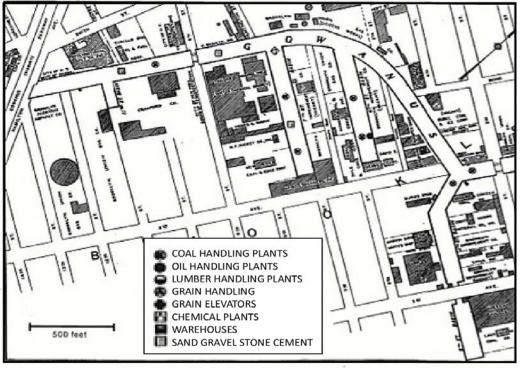
1.8 mile (2.9 km) man-made canal


Geosyntec[▷]



Gowanus Canal History

- Authorized: 1848
- Constructed: 1853 1869
- Peak operation: 1915-1950
 - 25,000 vessel trips/year and 60 dock facilities
- By 2000
 - 500 vessel trips/year and 5 dock facilities



Geosyntec[▷]

Contaminants of Concern & EPA Action

 Industry and CSOs lead to elevated levels of PAHs, PCBs, heavy metals, and sewage

INDUSTRIES OF GOWANUS CANAL (CA. 1942)

Mar 2010

National Priorities List

Geosyntec[▷]

consultants

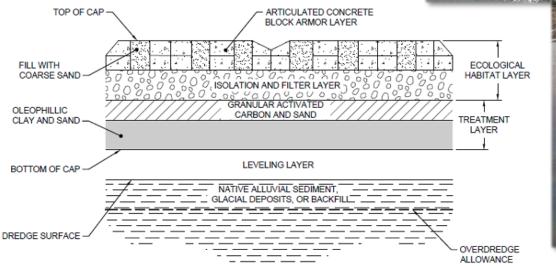
Jan 2011

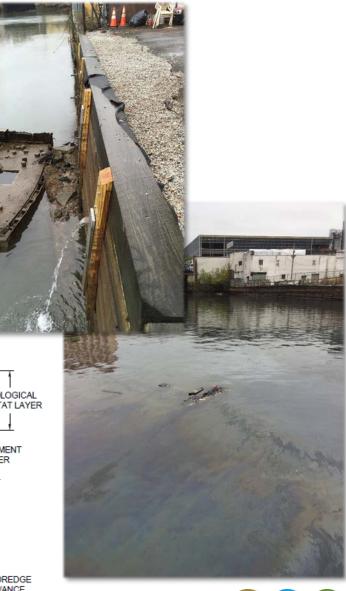
Remedial Investigation

Dec 2012

Feasibility Study

• Sept 2013


Record of Decision



Gowanus Canal Design Overview

Geosyntec^D

- Bulkhead repairs
- Dredging
- Ex-situ treatment
- Dredge water treatment
- In-situ stabilization
- Capping

Remedial Design Pilot Testing

- Comprehensive Pilot Study in the 4th Street Turning Basin to aid design efforts
- Three phases
 - Site staging area preparation (Fall 2016)
 - Debris removal (Fall 2016)
 - Dredging, bulkhead stabilization, and capping (Fall 2017present)

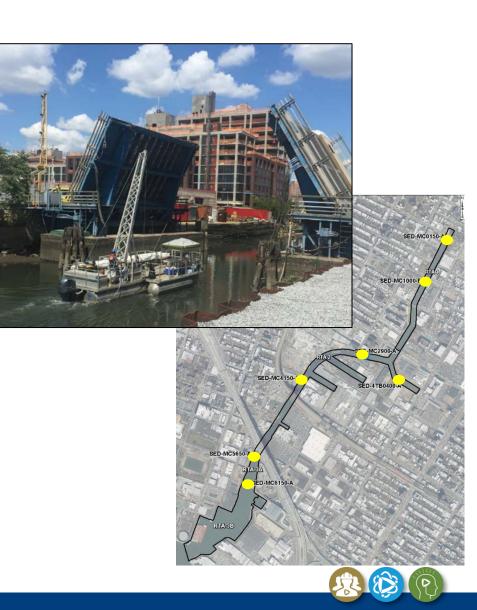
Dredged Material Treatment

- ROD Requirements: Stabilization or thermal treatment prior to beneficial use
- Treatability testing conducted to:
 - Evaluate dredged material handling properties and disposal characterization
 - Determine appropriate treatment and end-placement option for dredged material

Geosyntec^D

Dredged Material Treatability Testing

- Verify that stabilized dredged material can be managed as a nonhazardous waste
- Optimize Portland cement mixing ratios
- Provide physical and chemical data to permitted end-use facilities to evaluate acceptability of dredged material



Geosyntec[▷]

Sampling Program

- Sediment core collection
- Identify soft/native interface
- Homogenize soft/native material for analytical testing
 - Bulk chemistry, toxicity, geotechnical parameters

Stabilization Testing

- Homogenized samples stabilized with 8%, 12%, and 15% Portland cement by wet weight
 - Mixed for 30 minutes with shovel, mud mixing drill, or cement mixer
- Cover and cure
 - Day 1: Liquid release test
 - Days 1, 4, 7: analyze for geotechnical parameters
 - Day 3: Crush and analyze for bulk chemistry and toxicity

Geosyntec[▷]

Geotechnical Testing – Major Observations

Parameter (Average)	Soft Sediment	Native Sediment
Moisture Content	106%	27%
Specific Gravity	2.36	2.65
Organic Content	17%	4%

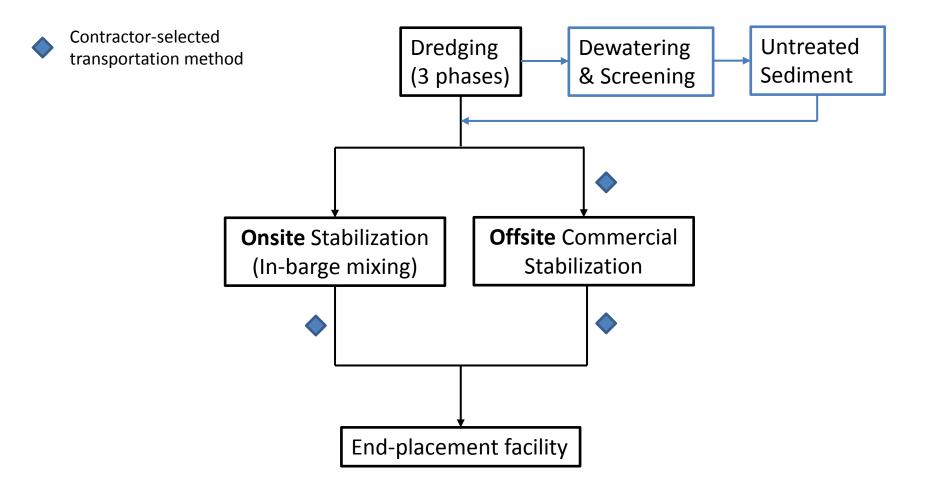
Treatability Study Results

Analytical Testing

- Treated dredged material considered **nonhazardous** based on toxicity, reactivity, and ignitability testing
- Contaminant
 concentrations tend to
 decrease or remain the
 same when stabilized with
 Portland cement

- Liquid Release Testing
 - Dosage of 8% Portland
 cement prevented liquid
 release for native sediment
 - Liquid released for majority of soft sediment samples stabilized with 8% and 12% cement

Pilot Study - Background



- Evaluate processes for managing dredged material
 - Initial processing
 - Dewatering
 - In-barge mixing
 - Dredged material transport
 - Receipt by off-site facilities
 - Constraints

Pilot Study – Dredging/Processing Overview

Geosyntec[▷]

1. Settling/Dewatering

 Loaded hopper scows (100 CY / 75 m³) moored to staging site bulkhead for 30 minutes of settling (minimum)

Geosyntec[>]

2. Dredge Water Treatment

 Decant water pumped to onsite dredge water treatment system; approx. 25 gallons decanted per ton of dredged material (105 liters per metric ton)



Geosyntec[▷]

3. Debris screening

- Vibratory screen with 6-inch (15-cm) bar spacing

Geosyntec[▷]

4. In-barge Mixing

- Type 1 Portland cement added using 1.5 metric ton supersacs; mixing time of 8 to 9 minutes per supersac
- Minimum of 18 hours cure time

Geosyntec[▷]

DOS Scow	Total Weight of Stabilized Sediment (Metric Tons)	Draft (m)	Percent Portland Cement
Scow 1	635	2.4	7%
Scow 2	771	2.7	8%
Scow 3	771	2.7	8%
Scow 4	771	2.7	15%

Off-site Processing and Stabilization

- Debris staging for archaeological review
- Measure weight of untreated sediment
- 8% Portland cement addition via pugmill

Geosyntec^o

 A dosage of 8% was sufficient to stabilize dredged material for beneficial use; 15% or greater could be required for clean-up pass

Loading technique:

 Use of 6-inch (15-cm) grizzly bars improved dredging production; however, breakdown of vibratory screen is potential bottleneck.

Transportation and Logistics

 Importance of covering scows during transport to minimize collection of rainwater

Geosyntec^D

Beneficial Use

- Importance of pre-design testing of material, input from acceptance facilities, and early coordination of permit approvals
- Dredged material has been successfully treated, transported, and beneficially re-used as landfill precover

Overall

- Valuable insight gained from dual approach of bench scale + pilot scale testing
- Data add to collective project knowledge and reduce future risk during full scale implementation

Acknowledgments

- Gowanus Canal Remedial Design Group
- Sevenson Environmental Services
- Geosyntec Team Members
 - Dave Himmelheber, Jay Beech, Howard Cumberland

