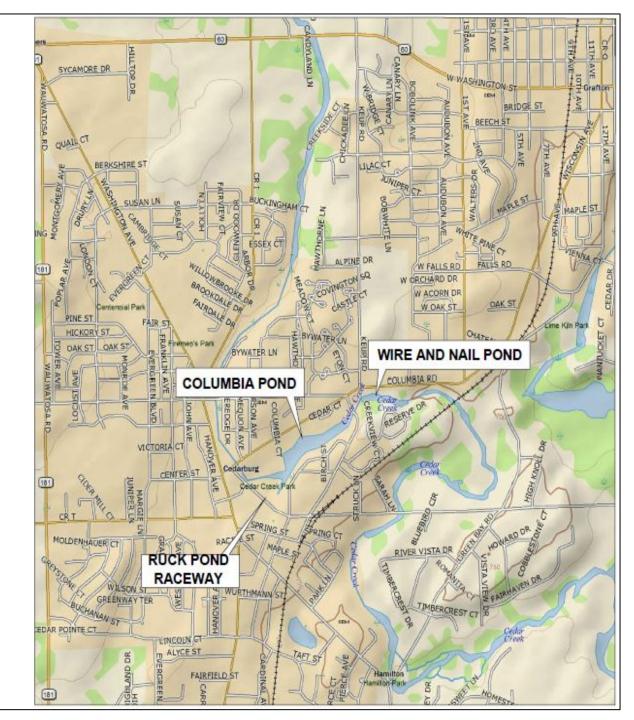


LESSONS LEARNED

Managing Multiple Waste Streams at a Superfund Alternative Site

WEDA SUMMIT & EXPO '18



PROJECT OVERVIEW

- Superfund Alternative Site: Cedar Creek OU2A
- Cedarburg, WI
- PCBs contamination
- Two years to complete
- Project team: Brennan, IAI, RAMS, Cardno and NRT

PROJECT SITE

- Dredge Areas:
 - Ruck Pond Raceway
 - Columbia Pond
 - Wire & Nail Pond
- Landside operations: Legion Memorial Park, Adlai Horn Park

PCB CONTAMINATION

- Varying levels, from ND to 340 mg/Kg (Anchor QEA, 2016)
- Some TSCA-regulated material
- TSCA and Non-TSCA material layered throughout the dredge prisms

PROJECT GOALS

- 1. Complete the work safely and expeditiously, increasing production and efficiency to reduce project schedule;
- 2. Extract and process TSCA and non-TSCA material separately, without cross-contamination; and
- 3. Utilize the smallest footprint possible.

SCHEDULE

Milestone Event	Start	Finish
Phase 1 Project Mobilization/Site Construction	Oct. 2016	Nov. 2016
Ruck Pond Raceway - Mechanical Dredging	Nov. 2016	Dec. 2016
Ruck Pond Raceway - Backfill Placement	Dec. 2016	Dec. 2016
Phase 2 Site Construction & Mobilization	Nov. 2016	Mar. 2017
Columbia Pond - Hydraulic Dredging	Apr. 2017	Oct. 2017
Columbia Pond - Backfill Placement	Nov. 2017	Dec. 2017
Wire & Nail Pond - Hydraulic Dredging	Aug. 2017	Oct. 2017
Wire & Nail Pond - Backfill Placement	Dec. 2017	Dec. 2017
Dewatered Sediments Load- Out and Disposal	Nov. 2017	Apr. 2018
Final Demobilization & Restoration	Apr. 2018	Jun. 2018

PHASE I REMOVAL – Ruck Pond Raceway

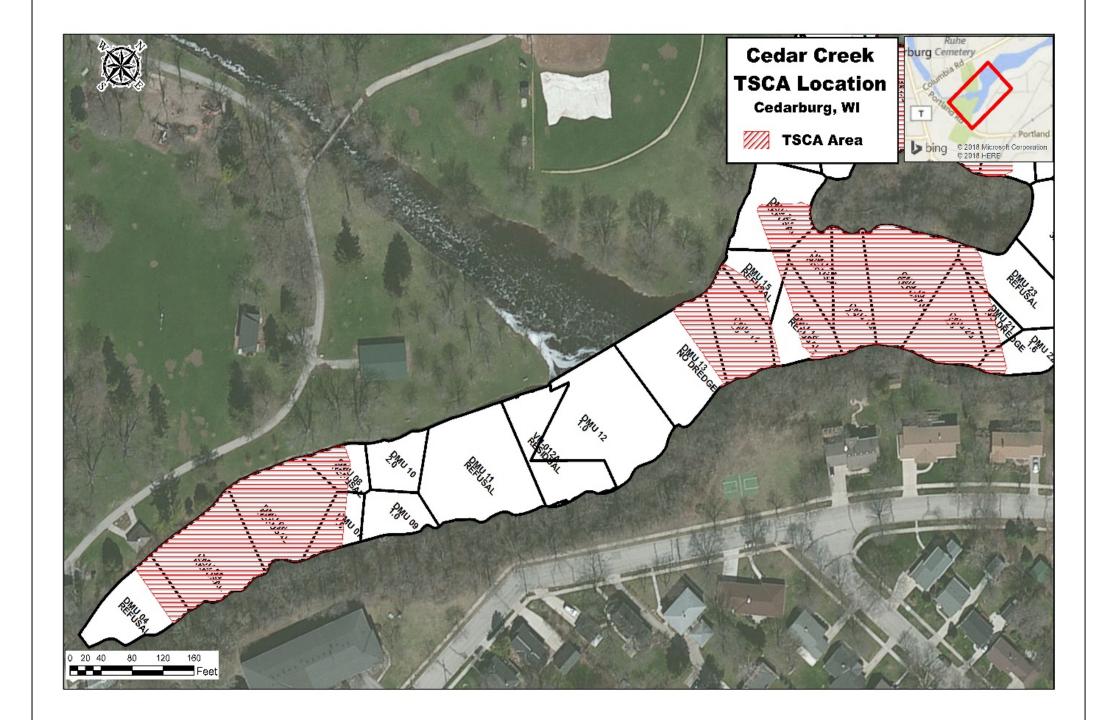
- Mechanical Dredging and Backfill Placement
- Non-TSCA & TSCA Sediment Removal
- Sediments Amended with Portland Cement and Calciment®
- Approximately 5,500 cy of sediments removed
- Over 700 Lineal Feet of Underground Structures Remediated

PHASE I WATER TREATMENT

- IAI utilized its Mobile Water Treatment System for Phase I
- 150 gpm water treatment plant
- Contained in two 52-ft. box trailers
- Clarification, filtration and carbon adsorption processes
- WI Certified Operator
- WPDES Permit Equivalency Non-detect PCBs limit
- No discharge limit exceedances

PHASE II REMOVAL

- Approximately 58,000 cy of target sediments removed from Columbia Pond
- Approximately 9,000 cy of target sediments removed from Wire & Nail Pond



DREDGE MANAGEMENT UNITS (DMUs)

- Project footprint divided into 124 Dredge Management Units
- Complex design due to target sediment thickness and mapped concentrations
- Average DMU size: approximately ¼ acre

DREDGES

- (2) 8" Hydraulic swinging ladder Moray Class dredges
- (1) standard ladder length and (1) customized long ladder
- Utilized both standard cutterhead and patented Vic Vac™ attachments
- Utilized "Excavator Assist" method for bank areas

MANAGING WASTE STREAMS: From the Water

- Pre-Planning Operations for Efficiency of Waste Stream Removal
- Mapping of Sediments Prior to, During and After Removal
- Customized Software for Operator Visibility of Removal Operations
- Coordination and Execution of Plans

HIGH FLOW DREDGED MATERIAL PROCESSING

- Process flow from both dredges (up to 3000 GPM) simultaneously
- Space restrictions (limited area available in public park)
- Separate TSCA and Non-TSCA processing areas
- Also needed space for WTP, sized to handle 3,000 GPM flow

SEDIMENT PROCESSING AREA (SPA)

- Two pads: TSCA and Non-TSCA
- Common Sump
- Clarifier Underflow Sent to TSCA Pad

CHALLENGES OF SMALL SPACE

- Managing trucking and deliveries, in residential area
- Tight tolerances on pad, sump and haul road sizes
- Stacked geotextile tubes to minimize footprint

GEOTEXTILE TUBE DEWATERING

Total no. geotextile tubes deployed	42 tubes
Geotextile tube sizes	60 – 82.5 ft., dia. Up to 285 ft., length
Total volume material dewatered	70,555 cu yds
Stacking	4 layers in Non-TSCA Pad 3 layers in TSCA Pad
Time to fill each geotextile tube	2-4 days

SEPARATE PROCESSING: TSCA, NON-TSCA

- Two pipelines entering SPA
- Engineering control:
 - Lock-out/tag-out system to prevent valve mis-alignment
 - JFB & IAI PMs held keys
- Administrative controls:
 - Frequent communication between JFB and IAI
 - Recordkeeping (surveys and material tracking by JFB)



CHEMICAL CONDITIONING

- Single-product application for both TSCA and Non-TSCA material
- Cationic emulsion polymer
- Approved for use on the project by WDNR
- 1% solution made down on site with IAI's container polymer application system
- Injected into geotextile tube headers in the SPA
- Flow- and density-paced application

STACKING GEOTEXTILE TUBES

- First row must be properly consolidated prior to stacking
- Chemical conditioning is key
- Physical means of opening pores in the geotextile fabric
- Type of material being dredged (grain size, organic content)

SPA DRAINAGE & FILTRATE COLLECTION

- One sump located between TSCA and Non-TSCA pads
- Pad surfaces sloped toward sump
- Collected tube filtrate and storm water
- Approx. storage capacity of 300,0000-gal.

PHASE II WATER TREATMENT

- IAI utilized a 3000 gpm WTP for Phase II
- Free-standing treatment units
- Clarification, filtration and carbon adsorption processes
- WI Certified Operator
- WPDES Permit Equivalency Non-detect PCBs limit
- No discharge limit exceedances

WPDES PERMIT EQUIVALENCY LIMITS

TSS, daily max. limit	10 mg/L
TSS, monthly avg. limit	5 mg/L
Oil and grease, daily max. limit	15 mg/L
Total PCBs, daily max. limit	Non-detect or <0.003 ng/L

All effluent limits met throughout the course of the project

CONCLUSIONS

- Hydraulic dredging to geotextile tubes is a viable option, even for sites with:
 - Multiple waste streams
 - Limited space for landside operations
 - Close proximity to public spaces
- Hydraulic dredging to geotextile tubes allowed:
 - Effective production rate
 - Material transport in closed system (reduced risk of public exposure to contaminants)
 - Separate extraction and handling of TSCA and Non-TSCA material, without incident

