

Cedar Creek Site – Operable Unit 2A: Lessons Learned During Implementation of an Environmental Dredging Project Located within a Historic Town

Kimberly Powell (Anchor QEA), Craig Dousharm (Mercury Marine), Joseph Detor (Anchor QEA), J. Paul Doody (Anchor QEA), and Michael Conese (Anchor QEA)

WEDA Dredging Summit & Expo 2018

Navigating the Future in Dredging, June 25-28, 2018, Norfolk, Virginia

Overview

- 1 Site Background and Description
- 2 Design Elements
- 3 Dredging and Cover Placement Operations
- 4 Lessons Learned

1 Site Background and Description

Site Background

- Part of Cedar Creek Superfund Alternative Site
 - Approximately 1.3-mile stretch of creek and floodplains
 - Located in Cedarburg, Wisconsin
- Polychlorinated biphenyls (PCBs) entered Cedar Creek through stormwater connections
- Project implemented as a Non-Time Critical Removal Action (NTCRA)

Cedar Creek Site – Operable Unit 2A

Site Description

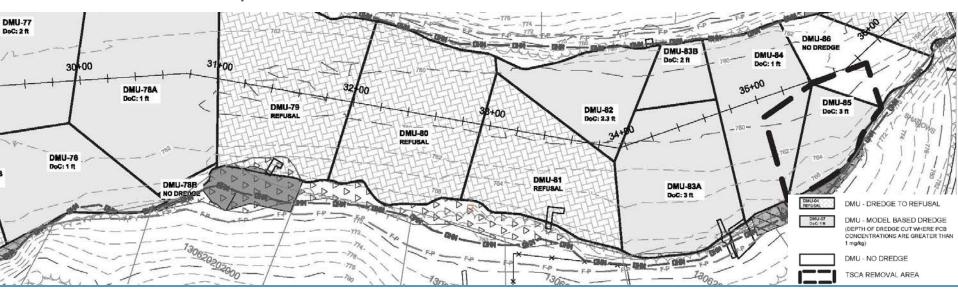
- Ruck Pond Raceway
 - 2,200-foot diversion channel
 - Both culverted sections and open channel
- Columbia Pond
 - 15-acre shallow impoundment
 - Controlled by Columbia Mills
 Dam
- Wire and Nail Pond
 - 2-acre narrow impoundment
 - Controlled by Wire and Nail Factory Dam

Open Channel of Ruck Pond Raceway

Island in Columbia Pond

Aerial View of Wire and Nail Pond near Wire and Nail Factory Dam

2 Design Elements


Design Requirements

 USEPA and Mercury Marine entered into Settlement Agreement to perform a NTCRA

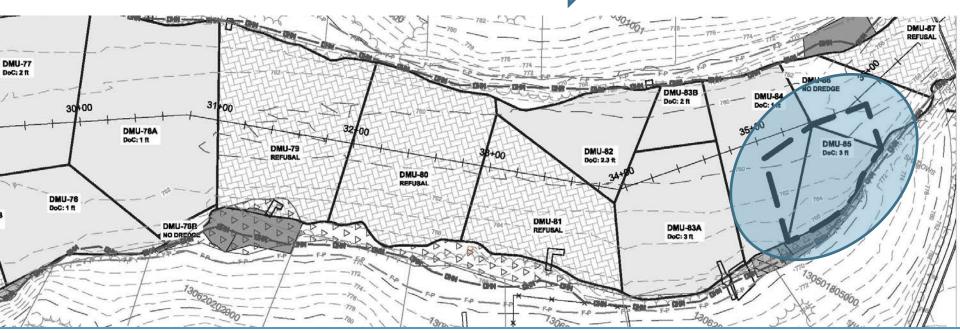
Media	Removal Criteria
Soil	• 1 mg/kg PCBs
Sediment	 2.5 mg/kg PCBs 98% mass removal Short-term surface-weighted average concentration (SWAC) goal of 0.5 mg/kg PCBs Long-term SWAC goal of 0.25 mg/kg PCBs

 Mercury Marine elected to lower sediment removal action level used in design to 1 mg/kg

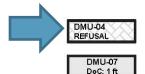
- 3D removal prisms incorporating:
 - Materials with different disposal requirements
 (e.g., Toxic Substances Control Act [TSCA] materials)
 - Location of the sediment containing PCBs within the vertical profile

- 3D removal prisms incorporating:
 - Materials with different disposal requirements (e.g., TSCA materials)
 - Location of the sediment containing PCBs within the vertical profile

REFUSAL

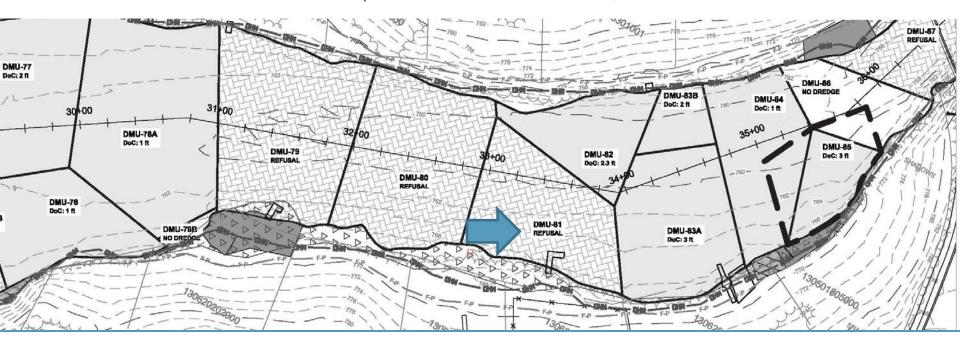

DMU - DREDGE TO REFUSAL

DMU-07

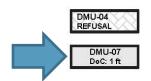

DMU - MODEL BASED DREDGE (DEPTH OF DREDGE CUT WHERE PCB CONCENTRATIONS ARE GREATER THAN 1 mg/kg)

DMU - NO DREDGE

- 3D removal prisms incorporating:
 - Materials with different disposal requirements (e.g., TSCA materials)
 - Location of the sediment containing
 PCBs within the vertical profile

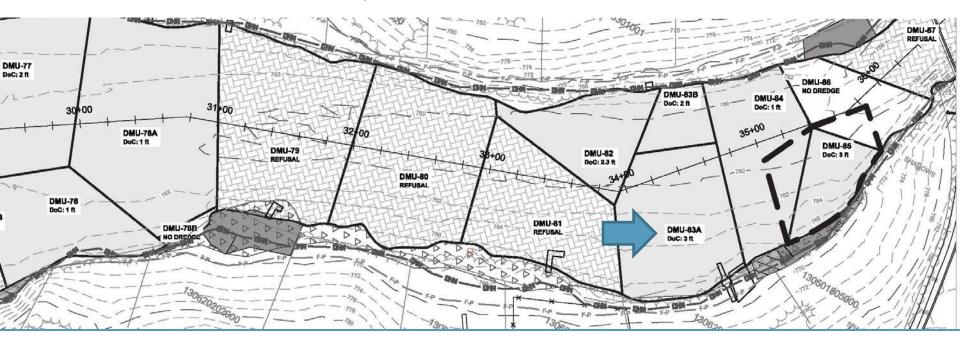


DMU - DREDGE TO REFUSAL


DMU - MODEL BASED DREDGE (DEPTH OF DREDGE CUT WHERE PCB CONCENTRATIONS ARE GREATER THAN 1 mg/kg)

DMU - NO DREDGE

- 3D removal prisms incorporating:
 - Materials with different disposal requirements (e.g., TSCA materials)
 - Location of the sediment containing
 PCBs within the vertical profile



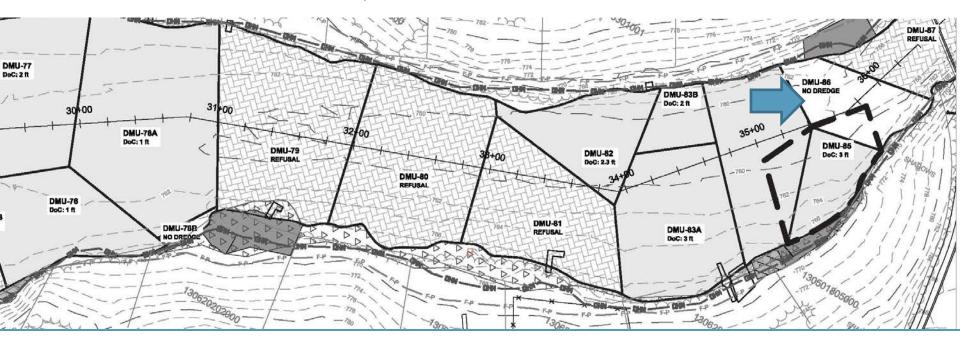
DMU - DREDGE TO REFUSAL

DMU - MODEL BASED DREDGE (DEPTH OF DREDGE CUT WHERE PCB CONCENTRATIONS ARE GREATER THAN 1 mg/kg)

DMU - NO DREDGE

- 3D removal prisms incorporating:
 - Materials with different disposal requirements (e.g., TSCA materials)
 - Location of the sediment containing
 PCBs within the vertical profile

DMU-04 REFUSAL


DMU - DREDGE TO REFUSAL

DMU-07 DoC: 1 ft

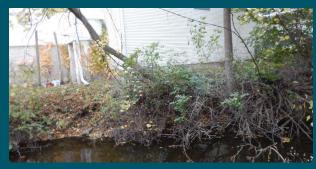
DMU - MODEL BASED DREDGE (DEPTH OF DREDGE CUT WHERE PCB CONCENTRATIONS ARE GREATER THAN 1 mg/kg)

DMU - NO DREDGE

Removal Verification

- Program consisted of physical (single-beam bathymetry) and chemical means of verification
- "Chemical" means differed by Dredge Management Unit (DMU)
 - DMU Model-Based Dredge: Up to three sediment cores were collected within a 0.25-acre verification unit, and the surface samples (i.e., 0 to 0.5 foot) from each core were composited
 - DMU Dredge to Refusal: A practical limit of less than
 4 inches of sediment thickness based on sediment probing
 was specified, as the contractor was required to remove all
 soft material (as practical)

Residual Cover Placement


- 6-inch residual sand cover required:
 - All dredge to refusal DMUs
 - Model-based DMUs where PCB removal level met but in excess of SWAC goal

Design Challenges

- Limited space for staging area
 - Two city-owned public parks
 - Commercial business' parking lot
- Quality of life considerations
 - Restricted work hours (7am to 7pm, Monday through Saturday)
 - Sequenced work to minimize disruption to community
- Ownership of surrounding properties
 - Third-party private, commercial, and public land owners

Cedar Creek Park within OU-2A

Building adjacent to Ruck Pond Raceway

Aerial Depiction of residential neighborhoods near OU-2A

Dredging and Cover Placement Operations

Remedial Construction

- J.F. Brennan was selected contractor
 - Infrastructures Alternatives, Inc. performed dewatering and water treatment
 - Rams Contracting, Ltd assisted with clearing and grubbing, excavation, and trucking

Ruck Pond Raceway Removal Activities

- Water diverted from raceway at Ruck Pond Dam
- Culverts cleaned with pressure washer and vacuum truck
- Sediments excavated with:
 - Small, low-ground-pressure equipment
 - Long-reach excavator
- Residual sand cover placed after excavation

Ruck Pond Raceway Material Management

- Removed materials processed in Remediation Support Area with Portland Cement or Calciment®
- Water treated with on-site plant
- 5,500 cubic yards (cy) removed and disposed

Removal in Ponds

- Sediment removal with two,
 8-inch hydraulic dredges:
 - Cutterhead
 - Vic Vac attachment
- Removal positioned and tracked with RTK GPS and Dredgepack®
- Residual dredging occurred in one-quarter of dredged area
- More than 67,000 cy removed with average rate of 425 cy/day

Sediment Processing Area

- Dredged sediment dewatered in 42 geotextile bags
- 3,900-gallon per minute water treatment plant treated contact water and discharged back to creek

In-Water Cover Areas

- Cover placed over more than 11 acres of OU-2A
- SWAC <0.25 mg/kg achieved for all zones

Zone	SWAC (mg/kg)
Ruck Pond Raceway	< 0.01
Columbia Pond	0.18
Wire and Nail Pond	0.06

4 Lessons Learned

Lessons Learned

- Community Interactions
 - Engaged with community through mailings, open houses, and individual meetings
 - Maintained core team of representatives
 - Empowered contractor to meet and address minor concerns
- Removal Verification Approach
 - Provided roadmap to construction team
 - Accepted by all parties
 - Adapted in field as project progressed

Lessons Learned (cont'd)

- Disposal of Dewatered Material
 - TSCA risk-based disposal option reduced total trucking mileage
 - Understanding landfill planned operations are key with unmeasurable "workability" criteria

Questions?

