

Dredged Material Testing A Work Flow Guide for Project Managers and Testing Laboratories

Dredging Summit & Expo '18 Norfolk, VA

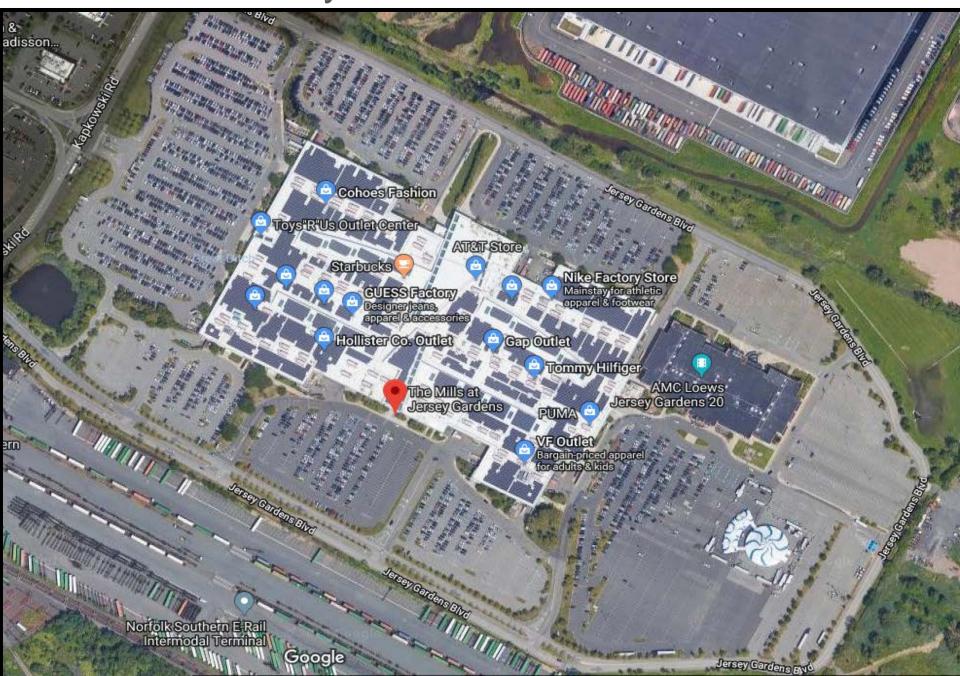
Alpha Analytical & Key Environmental, Inc.

Co-Presenter: James (Jim) Occhialini, Vice President, Sediment Program Manager Co-Presenter: Jacob Bourdeau, P.E., Senior Project Manager

June 26, 2018

Historic Maintenance Dredge Sediment Reuse in the New Jersey/New York City Metropolitan Area

- Dredge reuse is primarily used as fill materials
- Largely clayey and sandy silts, amended with 8% Portland Cement after dewatering in scow
 - Cement helps bind trace heavy metals contained in the sediments
 - Cement helps reduce moisture and increase strength
- Reused upland on impacted sites for fill or as part of surface cover
- >20 years: New Jersey was the primary placement location
 - Obtain an Acceptable Use Determination (AUD) from the NJDEP
 - Jersey Gardens Mall
 - Business Parks
 - Meadowlands
- Chemical characterization completed in advance of reuse requires agency review and approval
- Geotechnical testing often ignored due to the historic database of testing



The Mills at Jersey Garden

Benefits of Dredge Reuse

- Local renewable and recyclable resource for structural fill
- Reduces need for ocean disposal or CDF
- Environmentally protective (risk based)
- Savings of potential landfill space and cost
- Provides a solution for the Port Authority
- Benefits the placement site
- Reduced analytical testing complexity compared to ocean placement

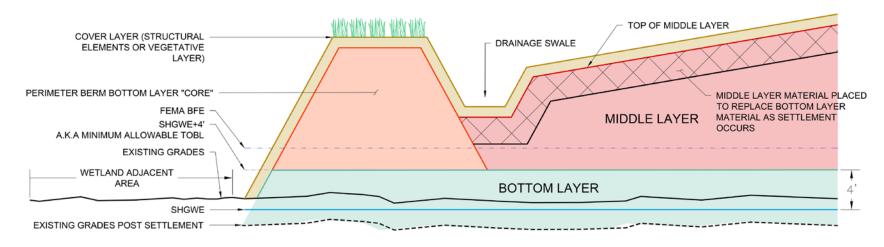
Recent Developments

- Dredge reuse in NY was first permitted on a large scale project in NYC (380 Development)
 - ->4,800,000 cubic yards
 - Beneficial Use Determinations (BUD) used for NYSDEC approval of each source or reach
 - Warehouse/Waterfront Development
- New York Port 360 Regulations were updated late in 2017 and address NDM
- MDE Innovative Reuse and Beneficial Use of Dredged Material Guidance (August 2017)

Proposed Marine Terminal & Logistics Center

380 Warehouse Construction

380 Development Site Information


- 675-acre Brownfield Waterfront Redevelopment Site (NYSDEC Region 2)
- Past Use Major Oil Terminal and LNG Plant
- Future Use Logistics Center with warehousing and/or Marine Terminal
- Remediate per Modified Order on Consent
- Surface Cover Design Considerations
 - Account for Perimeter dike, existing stormwater system and wetlands
 - Provided Stormwater Drainage and Treatment
 - Developable Ground Surface above the Flood Plain and Seasonal High Groundwater
 - Stable Earth Placement (Supports Development)
 - Three Layer Surface Cover Approach
- Chemical Requirements/Geotechnical requirements
- <u>Middle Layer</u> Amended or Raw Dredge meets the Commercial and Protection of Groundwater (PGW) SCOs, if > PGW SCOs, allows for SPLP Leachate
 Groundwater Standards (Class GA)

Completed Construction Post-Settlement

COMPLETED CONSTRUCTION POST-SETTLEMENT

Dredged Material Testing - A Work Flow Guide for Project Managers & Testing Laboratories

Laboratory Characterization

Jim Occhialini Liz Porta Alpha Analytical

Sediments are Different...

General Project Planning

- Project schedule, logistics, required turnaround time
 - Sample holding time
- Simultaneous Vs. tiered approach analytical scheme
- Sampling & analysis plan
 - Project specific QC requirements
 - Field QC samples
 - Laboratory certifications
- Regulatory criteria for disposal
 - Upland disposal, beneficial re-use, open ocean, etc.
 - Detection limits

Field Logistics

- Compositing instructions
 - Tracking of composite intervals
- Sediment amendments?
 - Amending ratio?
- Sample volume requirements
- Long term storage of sediment samples?
 - Sample disposal timeframe

Testing Required to Support Beneficial Reuse NY / NJ Upland Disposal

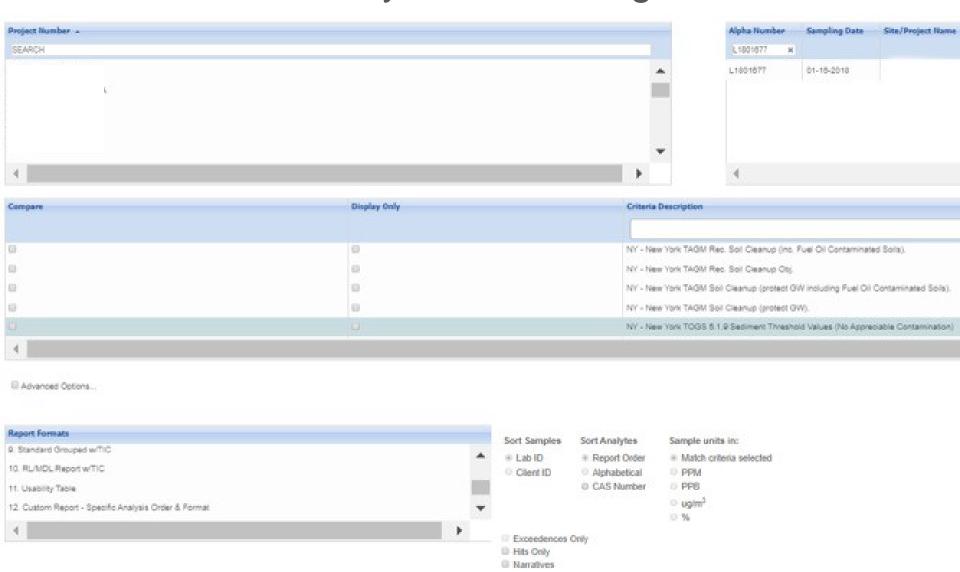
- Grain size (< 90% sand)? TOC (> 0.5%)?
- Analytical testing
 - VOCs, SVOCs, PCBs, pesticides, metals, hex Cr, CN, pesticides / herbicides & TCDD / TCDF
- Sample generation
 - Composite / homogenize as needed, preparation of:
 - Raw bulk sediment chemistry
 - Processed amended sediment (e.g 8% Portland cement)
 - SPLP analysis of the processed amended chemistry
 - 3 sets of results per sample (raw, amended & SPLP)

35.21 BVUN E ... piposso. Eight Size 1/17/18 1-c 10:39 INTINIA DUSTANIA

Sample Amendment

- ~ 2000g raw bulk sediment
 - Standard protocol
 - e.g 8% ratio Portland Cement to sediment
- Amended sediment subsampled for chemistry analysis

aha Analytical, Inc. cility: Mansfield, Ma apartment: Organic I tle: Sediment Amend	xtractions			Published Date:	ID: 29 Revisi 1/15/2018 3:45:2
Hent:	Project	Job #:		Date: 1/22/18 A	Page 2
Composite Sample ID	Laboratory ID	Sample Weight	Can weight	Sample weights plus can weight	Portland Ceme
7	677 - IST				Added (g), 8%
	677 - 150				
	22 .55				
	77 - 155 77 - 15T				
6	77 - 150				
67	7-155				


SPLP Analysis

- Amended sediment sub sample
 - Aliquot prepared for SPLP extraction
 - 20X ratio solid to extraction fluid
 - 18 hour extraction
 - Generation of aqueous leachate sample
- Aqueous sample analyzed for same chemistry parameters

Data Delivery / Data Management

Data Delivery / Data Management

FI	LE HOME INSERT PAGE LAYOUT	FORMULAS [data revi	EW VIEW	1										
-	X Cut Arial ▼ 8	A A =		Wrap '		General	•	=				₩	AutoSum ¬	ZII	
Past	B I U -	△ - A - ■ ■	≣∣€	Merge	& Center 🕶	\$ - %	00. 00. 00. 00. ♦ 0	Conditional Formatting	Format as Cell Table Styles	I Insert D	elete Forma	t 🙋	Clear ▼	Sort & Finc Filter → Sele	
	Clipboard 5 Font	E _k		nment	E.				Styles		Cells		Ed	iting	
AP:	.95 · : ×	✓ fx -													
	A	В	С	D	Е	F	G	Н	ı	J	AL	AM	AN	AO	
1	7.1					'			•		/ ()		MPOSITE (
2															
3												1/19/2018			
3													Sediment		
4			NY-RESC		NY-RESGW	NY-RESI	NY-RESR		NY-TOGS-SDM	NY-UNRES					
	ANALYTE	CAS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Conc	Q	RL	MDL	
	POLYCHLORINATED BIPHENYLS BY GC														
	Aroclor 1016	12674-11-2	1	1	3.2	2 5	1	1	NA	0.1	ND		0.0172	0.0172	
	Aroclor 1221	11104-28-2	1	1	3.2	25	1	1	NA	0.1	ND		0.0172	0.0172	
	Aroclor 1232	11141-16-5	1	1	3.2	25	1	1 1	NA	0.1	ND		0.0172	0.0172	
	Aroclor 1242	53469-21-9	1	1	3.2	25	1	1	NA	0.1	ND 0.474		0.0172	0.0172	
176	Aroclor 1248 Aroclor 1254	12672-29-6 11097-69-1	1	1	3.2 3.2	25 25	1	1	NA NA	0.1 0.1	0.171 0.242	P	0.0172 0.0172	0.0172 0.0172	
	Aroclor 1254 Aroclor 1260	11097-69-1	1	1	3.2	25 25	1	1	NA NA	0.1	0.242	Р	0.0172	0.0172	
	Aroclor 1260 Aroclor 1262	37324-23-5	1	1	3.2	25 25	1	1	NA NA	0.1	0.104 ND		0.0172	0.0172	
	Aroclor 1268	11100-14-4	1	1	3.2	25	1	1	NA NA	0.1	ND ND		0.0172	0.0172	
	PCBs, Total	1336-36-3	1	1	3.2	25	1	1	0.1	0.1	0.517		0.0172	0.0172	
	GENERAL CHEMISTRY													,	
182	Chromium, Trivalent	16065-83-1	1500	41	NA	6800	36	180	NA	30	95		4.4	4.4	
183	Solids, Total	NONE	NA	NA	NA	NA	NA	NA	NA	NA	44.7		0.1	0.1	
	Cyanide, Total	57-12-5	27	NA	40	10000	27	27	NA	27	ND		2	0.44	
	TOTAL METALS														
	Arsenic, Total	7440-38-2	16	13	16	16	16	16	14	13	16.3		1.1	0.145	
	Barium, Total	7440-39-3	400	433	820	10000	350	400	NA	350	155		6.6	0.464	
	Beryllium, Total	7440-41-7	590	10	47	2700	14	72	NA	7.2	1.05		0.66	0.192	
	Cadmium, Total	7440-43-9	9.3	4	7.5	60	2.5	4.3	1.2	2.5	1.4		0.44	0.058	
	Chromium, Total	7440-47-3	NA 270	NA 50	NA 4720	NA 40000	NA 270	NA 270	NA	NA 50	95		4.4	1.03	
102	Copper, Total Lead. Total	7440-50-8 7439-92-1	270 1000	50 63	1720 450	10000 3900	270 400	270 400	33 33	50 63	169 159		4.4	0.426 0.321	
	Manganese, Total	7439-92-1 7439-96-5	1000	1600	2000	10000	2000	2000	NA	1600	692		1.32 4.4	0.321	
194	Mercury, Total	7439-90-5	2.8	0.18	0.73	5.7	0.81	0.81	0.17	0.18	1.95		0.026	0.003	
195	Nickel, Total	7440-02-0	310	30	130	10000	140	310	NA	30	60.6		2.2	0.587	
196		7782-49-2	1500	3 9	4	6800	36	180	NA NA	3.9	4 16	.l	4.4	1.66	
		Hit Summary	Aqueous Sa		0 Aqueo	ous Hit Sun		CF Samples '							

Data Review

- Compare to placement site-specific requirements
- Run contingent samples, if necessary
- Compare Results/RLs/MDLs to requirements
- Material inspection and confirmation upon delivery
- Is confirmatory sampling required or contingent sampling?

Preparing for Upland Reuse

- Development of Project details and needs
 - Locations, volume, expected types of sediments
- Identify potential placement location(s) and site-specific criteria
 - Number of borings
 - Specific zones (silts, sands, clay, till)
 - Number of samples
 - Chemical criteria and reporting limits (e.g., commercial use or direct contact, groundwater protection, Ecological protection?)
 - Other
- Prepare Site-Specific Sampling and Analyses Plan (SSAP)
- Obtain agency approval of plan
- Implement SSAP and compare results to site-specific or regulatory criteria (NJSRS, like-on-like, 75th Percentile, NYSDEC Part 360, PA Fill Guidance)
- Permits

Typical Means for Approval

- Development/Dredge Permit
- NY BUD Site-specific Beneficial Reuse Determination (BUD)
- NY Part 360 Regulations for use of amended or raw dredge as fill
- NJ Dredge permits with NJ AUD
- PA Fill Regulations, ACT 2, and Development Permits
- MD Beneficial Reuse Guidance

Lessons Learned

- Identify acceptance locations and site-specific requirements early
- Incorporate the requirements into the SSAP, and start conversations with the lab on details in advance of characterization
- Agency Flexibility (volume, criteria, number of borings, etc.,)? What about the reuse site?
- Use lab generated tables for quick criteria comparisons
- Plan for alternatives and potential worst case (What if 8 out of 10 samples pass site-specific criteria?)
- Verify the lab is certified in the state of reuse for the analytical parameters
- Work with an experienced lab to reduce time spent up-front
- Work with an experienced driller
- Optimize dredge/core volumes needed for testing and amendment at the lab and discuss with driller

