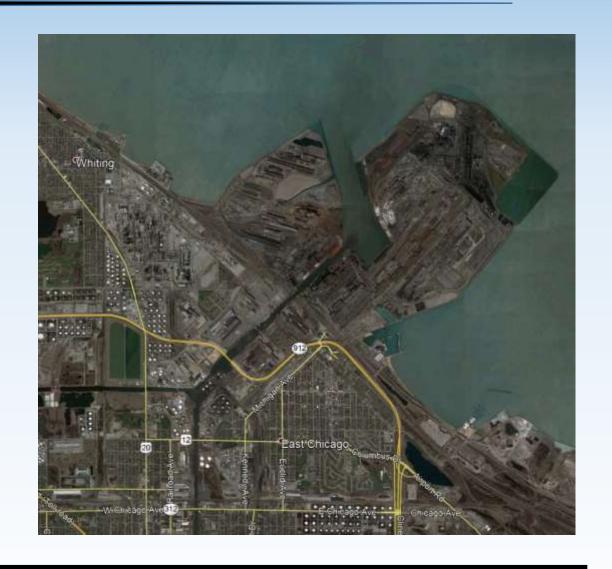
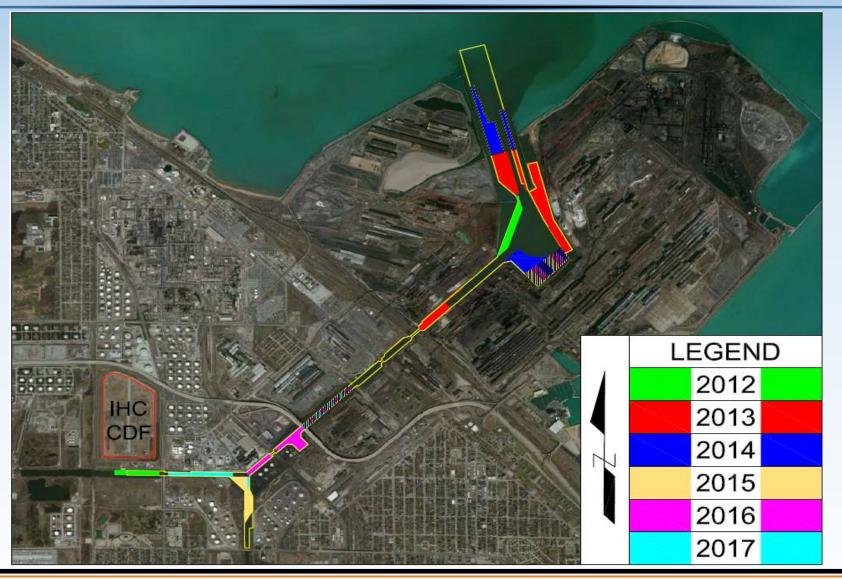
Indiana Harbor and Canal (IHC) Environmental Maintenance Dredging


Prepared for the WEDA Midwest Chapter Meeting March - Toledo, OH

IHC Facility Operations & Dredging

- Located in northwest Indiana in the city of East Chicago
- ❖ Previous contract 2011 to 2016
- Current contract Joint Venture selected in September 2016
- Operations include:
 - Mechanical Dredging & Offloading
 - Groundwater Gradient Control
 - Environmental Monitoring
 - **❖** Waste Water Treatment

Dredge Quantities


- ❖ First Contract
 ❖ 918,000 cubic yards
- Current Contract
 - Base year (2016)≈ 227,000 CY
 - ❖Option year 1 (2017)❖ ≈ 92,000 CY
 - Mobilization this spring to dredge 100,000+ CY
- ❖ Dredged to date 1,238,000+ CY

Indiana Harbor & Canal Dredging Map

Mechanical Dredging

- ❖ 14 CY level cut environmental bucket ≈ 50,000 lbs. of material/bucket
- Oil booms and absorbent around the "moon pool"
- Turbidity monitoring

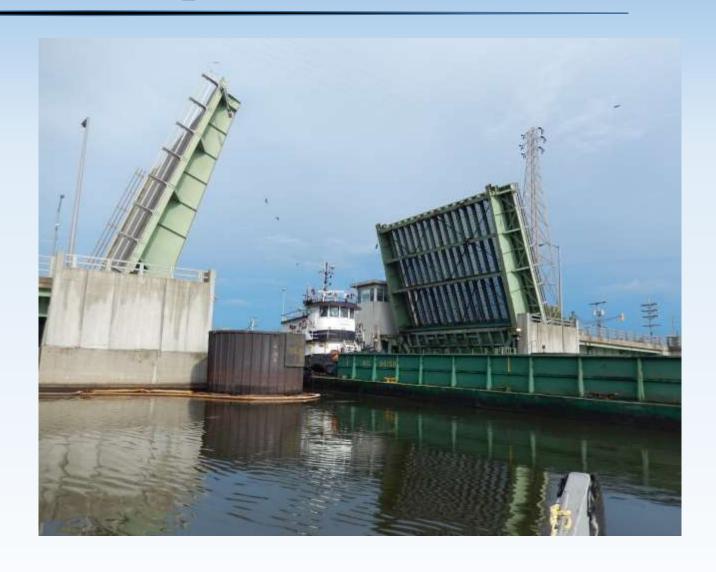
Mechanical Dredging Operation

Dredging Quality Control

- Positioning, survey profile, and cut controlled with ClamVision® software
- Allows for integration of real time turbidity and FTP uploads

Instream Water Quality Monitoring

- Two environmental monitoring buoys to measure contribution
 - Data Loggers
 - Two turbidity YSI sondes
 - Radio communication

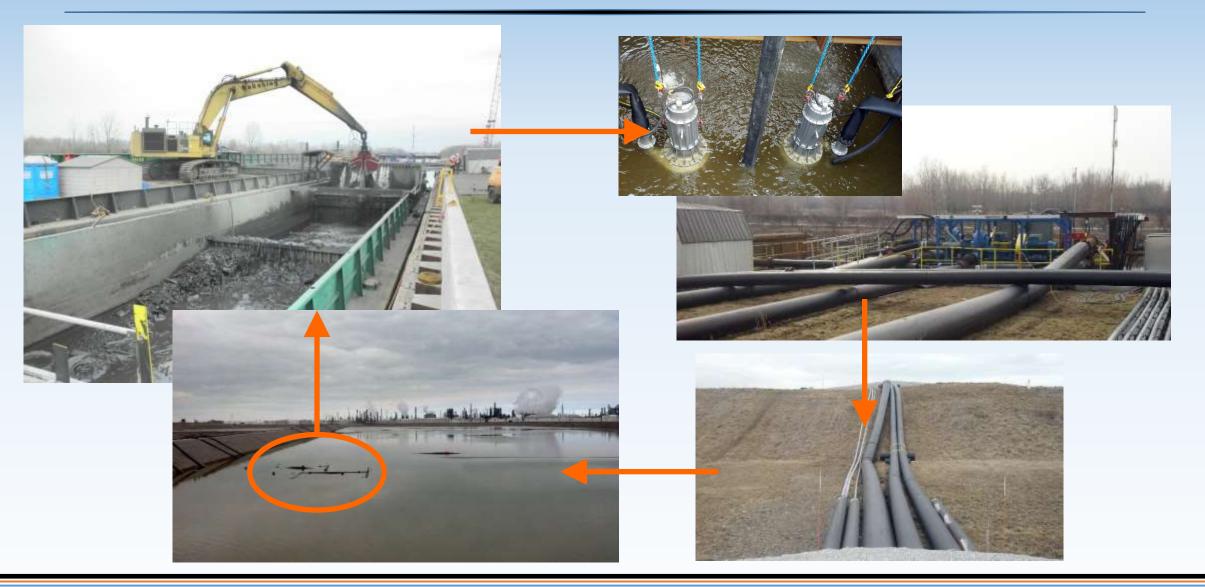


Scow Transport

- Over 4 miles of federal channel
- **❖** Six low bridges
 - Two passenger car bridges
 - ❖Four rail bridges
- Obstacles include:
 - Bridge hour restrictions and maintenance
 - **❖** Vessel Traffic

Offloading - Confined Disposal Facility

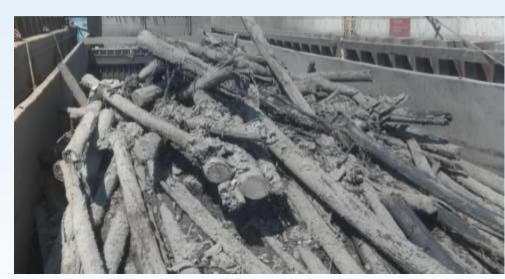
- Located on the site of a former refinery
- ❖≈ 90 acre CDF facility
 ❖Split into two ≈ 45 acre cells
- Capacity of 2.5 million CY



Offloading Operation Cycle

Mechanical Unloading

- Hopper barges are unloaded with a hydraulic clamshell
- Sediment is screened to prevent debris from entering the submersible pumps
- ❖ Debris is stored in the debris separation barge until limiting draft requires the debris to be offloaded into the CDF.



Debris Challenges

Debris Encountered

Hydraulic Disposal

- Two separate pumping trains
 - One submersible and one booster pump in each train
 - Each train controlled with Variable Frequency Drives to regulate the flow desired by the operator
- ❖ Farthest discharge is over 3000' from pump out barge
- Capable of remote operation

Dredge Material Placement

- ❖ 10 discharge locations in each cell
- Material is discharged evenly into one cell at a time
- Maximum allowable exposed sediment is 15% of CDF area to prevent airborne contamination
 - ❖ Maximum exposed sediment to date : 10%

Recirculation

❖ Water is recirculated to provide the necessary water to make a slurry without drawing additional water from the canal.

Water is also used in a manifold system to break up sediment placed on the debris screen to allow it's passage to the submersible pumps.

Environmental Monitoring

- Instream Water Quality Monitoring
- Ground Water Gradient Control Systems
- Real-time Volatile Emission Monitoring
 - ❖ Total VOCs at the dredge site
 - ❖4 Air Monitoring Stations at the CDF
 - Naphthalene
 - ❖ Airborne particulate

Groundwater Gradient Control

Lift Stations and Wells direct ground water back into the CDF

An inward gradient is maintained to prevent ground water contamination of the surrounding community

Waste Water Treatment

- ❖ Design May 2015
- Engineering approval August 2015
- Construction October 2015
 - Multi-Media Filter Tank, Activated Carbon Tanks, Frac Tanks

Waste Water Treatment - 2015

- ❖Started November 7, 2015
- ❖ Ended December 31,2015
- ❖Total Treated Water for 2015: 26,033,000 gallons.
- Problems encountered:
 - pH levels from Algae growing in pond
 - Frozen pipes.

Waste Water Treatment-2016

- Started March 16, 2016 to September 8, 2016
- ❖Goal was to drop the water level in the West Cell to accommodate material to be dredged in 2016
- Late fall treatment November 14, 2016 to December 8th
- ❖ Water Treated this year 116,082,983 gallons

Waste Water Treatment-2017

- Started April 5, 2017-Ended August 5, 2017
- ❖ Water Treated this year 70,584,000 gallons
- ❖Goal was to drop the water level in the East Cell to accommodate material to be dredged in 2017
- ❖No future pond water treatment this year

Daily Real-time Measurements

- Photo-ionization detectors (PID) used to measure VOC's
- Monitoring takes place at the dredge and at the offloading operations
- Concentration of VOC's determine the need for respirators

Questions? Comments?

Views expressed in this presentation are those of the Kokosing/ O'Brien & Gere JV and not those of the U.S. Government

