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What is Offshore & Dredging Engineering? 

Offshore & Dredging Engineering 
covers everything at sea that does not 
have the purpose of transporting 
goods & people and no fishery. 
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Research Question 

Problem definition: 
Existing methods for determining the concentration 
distribution in slurry transport are based on an average 
hindered settling velocity according to Richardson & 
Zaki for 2D channel flow. 
• In pipe flow the flow is 3D. 
• The hindered settling depends on the local 

concentration and thus on the position in the pipe. 
• The Richardson & Zaki equation is valid for low 

concentrations. 
• The advection diffusion equation is valid for small 

particles. 
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Concentration Distribution 

Chapter 7.10 & 8.13 
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Advection-Diffusion Equation 
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• Used in the Wasp model. 
• Derived for 2D open channel flow. 
• It is assumed particles follow the turbulent eddies. 
• It is assumed the (hindered) terminal settling velocity 

is constant over the cross section of the pipe. 
• There is no influence of the pipe wall. 



Diffusivity Based on LDV 
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The Bottom Concentration 
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Concentration Distribution at 0.5·LDV 
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Concentration Distribution at LDV 
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Kaushal et al. (2005) 



Concentration Distribution at 2·LDV 
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Advection-Diffusion Equation, Modified 
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• Derived for 2D open channel flow. 
• It is assumed the (hindered) terminal settling velocity 

is constant over the cross section of the pipe. 
• The hindered settling equation of Richardson & Zaki 

gives a velocity above Cvs=0.5-0.6 or Cvr=1 



Hindered Settling 
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Bed Fraction versus Bed Height 

Delft University of Technology – Offshore & Dredging Engineering 

© S.A.M 

*,ldvsm th

vr * th,ldv p

*,ldvsm th b

vr * th,ldv p

u v r
C u v D

vs vB

u v A
C u v A b

vs vB
p

Original Relative Bed Height

C (r) C e

Modified Relative Bed Fraction

A
C (r) C e      with:     f=

A

α
− ⋅ ⋅ ⋅

α
− ⋅ ⋅ ⋅

= ⋅

= ⋅



Local Hindered Settling, Step 0 
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Local Hindered Settling, Step 1 
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Local Hindered Settling, Step 2+ 
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Iterations High Line Speed , Cvr=0.5 
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Iterations Low Line Speed , Cvr=0.5 
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Different Line Speeds, Cvr=0.5 
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Experiments Gillies (1993), d=0.29 mm 

Delft University of Technology – Offshore & Dredging Engineering 

© S.A.M 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

r/D
p

(-)

Cvr(r) (-)

Relative Concentration Cvr(r)=Cvs(r)/Cvb vs. Relative Height r/Dp

Cvs=16% at 1.1 LDV

Cvs=25% at 1.1 LDV

Cvs=34% at 1.1 LDV

Gillies Cvs=16%

Gillies Cvs=25%

Gillies Cvs=34%

© S.A.M.



Experiments Gillies (1993), d=0.38 mm 
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Experiments Gillies (1993), d=0.55 mm 
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Experiments Gillies (1993), d=2.40 mm 
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Conclusions 
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• The concentration distribution using a diffusivity 
based on the Limit Deposit Velocity gives good 
results. 

• However, the hindered settling equation has to be 
modified in order to have zero settling velocity at the 
bed concentration. 

• Local hindered settling has to be applied. 
• The vertical coordinate has to be replaced by the bed 

fraction in order to find the correct cross sectional 
averaged volumetric concentration. 
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