Standardizing Visual Characterization of NAPL in Sediment Cores to Facilitate Remedial Decision-Making

Prepared for:

Western Dredging Association Midwest Chapter Meeting

Prepared by:

Mike Ciarlo Jamie Beaver Morgan Gelinas EA Engineering, Science, and Technology, Inc., PBC

March 2017

Introduction

- Non-aqueous phase liquids (NAPLs) are common driver of sediment remediation
 - MGP wastes and coal tar
 - PCB oils
 - Hydrocarbons mix from outfalls
- Considered special case by regulatory agencies
 - Define by physical phase
 - Pose risk as source and stressor
 - Distinct fate and transport

Introduction

Past 10 years have improved investigation methods

- Survey based on fluorescence
- Analytical methods
- Immunoassays, sudan dye, etc.
- Visual observation is still a key method
 - Many states consider an observation grounds for remedy
 - Methods are debated

Goals and Approach

- Goal: Defensible, standardized methodology for visual characterization of NAPL
 - Relatable to quantity
 - Relatable to fate and transport mechanisms
 - Implementable in field
 - General enough for range of settings

Approach:

- Define influence of fate and transport mechanisms
- Review existing frameworks
- Draw from case studies
- Methods for coring
- Relate to volume

NAPL Fate and Transport Overview

- Different pathways for LNAPL and DNAPL
- Distinctly different from groundwater fate and transport
- Key role of macro-scale physical processes

Existing Frameworks

Groundwater remediation framework

- Saturation levels (mobile vs. residual) key to dissolved phase
- Globules of free product considered isolated

NOAA Shoreline Assessment Manual

 Specific to petroleum & beach residues

NYSDEC MGP Guidance

- Specific guidance for sediment
- Terminology for different forms
- Application guidance
- MGP-specific
- Project and study-specific frameworks

NYSDEC NAMING CONVENTIONS

- TAR SATURATED
- COATED MATERIAL, LENSES
- HARDENED TAR
- BLEBS, GLOBS, SHEEN
- STAINING, ODOR
- PETROLEUM IMPACTS SATURATION & SHEENS
- PETROLEUM IMPACTS STAINING & ODORS
- PURIFIER WASTE AND ODOR
- NO OBSERVED IMPACTS

Case Studies

Case Studies

- Layering and distribution follow patterns that relate to fate and transport
- Globs and layer most associated with chemistry
- Sheens hit or miss for chemistry
- Logistics of sampling often a large factor

Coring Methods

Focus on continuity of lithology

Drilling method

- Continuous coring provides best continuity; issues of penetration versus recovery
- Hollow stem auger poses challenges

Core processing

- Split cores disturb interior but expose fresh surface
- Unsplit issues with drawdown

• Visual survey

- Variable needs based on type and setting
- Lighting, color, luster, resolution
- Fluorescence and Sudan dye can help but pose challenges

Distribution versus quantity

Blebs and Inclusions

- Volume of sphere or oblong
- Key metrics diameter or length & width

Layers

- Volume of cylinder
- Record thickness

<u>Network</u>

- Volume of cylinder times percent occupied by channels
- Record thickness; estimate percent sediment vs. NAPL

Stained or coated sediments

- Start with total zone volume
- Field determination of grain size/sediment type used to estimate pore space
- Separate inclusion volumes

Sheens or plating

- Measure area
- Apply nominal thickness based on viscosity
- [Often an indicator of other forms]

Proposed Framework

NAMING CONVENTION	DEFINITION	RECORDED FIELD PARAMETERS
INCLUSIONS	Zones where oils form a distinct and separable pocket from surrounding sediment matrix	
BLEBS	Isolated pockets < 2 mm	Color, luster, diameter, abundance / frequency
GLOBULES	Isolated pockets > 2 mm	Color, luster, abundance / frequency, geometry, size
TAR	Solid or semi-solid	Color, luster, abundance / frequency, geometry, size
LAYER	Inclusionforms continuous layer	Color, luster, thickness
NETWORK	Series of small channels and globules	Color, luster, layer thickness, ratio of channel space to matrix
PERMEATION ZONES	Zones where oil is distinguishable but mixed with sediment matrix such that it is not readily separable	
STAINED SEDIMENT	Color & texture indicate NAPL	Color, luster, abundance, size of zone, sediment texture, inclusions, % saturation
GREASY SEDIMENT	Luster and texture indicate NAPL	Color, luster, abundance, size of zone, sediment texture, inclusions, % saturation
FILMS	Zones where oil forms thin plates or sheens distinct from the underlying sediment and water matrix	
PLATES	Thin layer riding surface tension, fractures	Color, luster, area; seek other forms
SHEENS	Thin layer riding surface tension, does not fracture	Color, luster, area; seek other forms

Case Studies

Conclusions

Fate and Transport

- Form provides indication of key fate and transport processes
- Different from groundwater and between DNAPL and LNAPL

Existing frameworks

 Developed for specific purposes but provide useful terminology

Case studies & Coring Methods

- Definite patterns in NAPL distribution
- Continuous coring preferred with careful processing
- Site specific variation

Distribution and quantity

- Blebs, globules, and layers are readily relatable to volume/quantity/mass
- Networks, stained & greasy sediments pose challenges
- Sheens are poor indicators of chemistry
- Framework terms expected to be good indicators
- Considered modeling

Framework and Path Forward

- Proposed approach for visual characterization relies on a framework of
 - Inclusions, permeation zones, films
 - Notes on indicators of presence
 - Records of size, geometry, and NAPL-matrix ratio

Next step is field trial

- Identifying several trial sites
- Field data sheets that allow rapid recording of observations
- Compile data from data sheets and compare to analytical results
- Analyze predictive strength of multiple levels of framework hierarchy
- Track ease of use and incorporate field team input
- Evaluate potential use as indicator of which forms are actual risk drivers

