CH2MHILL.

Sheboygan River Great Lakes Legacy Act Project -Rapid Confirmation Sampling and Re-Dredge Decision Making

Western Dredging Association (WEDA) Midwest Chapter Annual Meeting – April 2013

Huck Raddemann – CH2M HILL

Overview

- Project Background
- Confirmation Sampling Goals and Objectives
- Sampling Approach
- Confirmation Sampling Rationale
- Data Collection and Evaluation
- Re-Dredge Design and Implementation
- Lessons Learned

Project Background

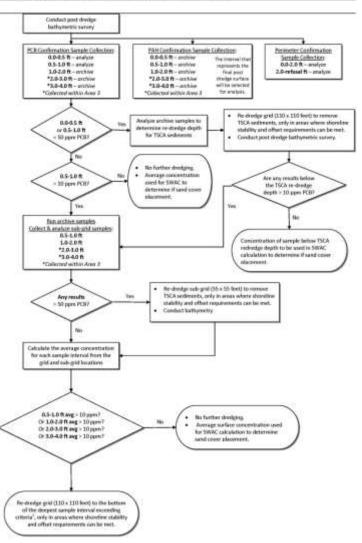
- Project Summary
 - Located within the Sheboygan River AOC in Sheboygan, WI
 - ~1.2 miles of river spanning 800 acres within a mixed land use
 - PCB and PAH contamination
 - Dredging occurred from Aug Nov 2012
 - Two Superfund sites located within GLLA project area
 - Completed in 2011 and 2012

Project Background

- Project Partners
 - EPA GLNPO
 - WDNR
 - City of Sheboygan
 - Sheboygan County
 - Two Responsible Parties
 - Wisconsin Public Service
 - Pollution Risk Services (PRS)
- Contractors
 - Ryba Terra Joint Venture (RTJV)
 - Mechanical Dredging and Construction
 - CH2M HILL
 - Design and Data Management

Project Background

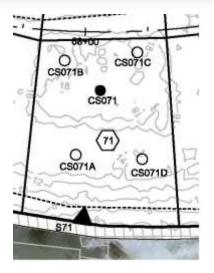
- Remedial Action Summary
 - Total Removal Volume: 146,875 cy
 - Non-TSCA and PAH =138,282 cy
 - TSCA = 8,593 cy
 - Sand Placement (2013)
 - ~9 acres of 6-inch sand cover


Confirmation Sampling Goals and Objectives

- Rapidly implement sediment confirmation sampling to provide quick-turn analytical results to determine need for further action
- Provide sufficient data to document post dredge PCB and PAH sediment concentrations and perform SWAC calculations
- Execute re-dredge design files accurately and timely to avoid dredge schedule delays
- Complete process with clear communication amongst project stakeholders and accurate documentation of re-dredge decision making

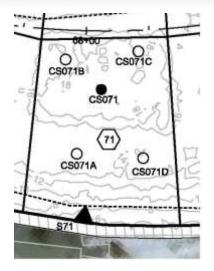
Sampling Approach

- Post Dredge Bathymetry
 - Multi-beam, Single-beam, & Poling
 - Daily collection and processing
 - daily dredging activities
 - Precipitation events
 - Air bubble curtain monitoring
 - Verification against design specs
- Sediment Confirmation Sampling
- Re-Dredge Implementation
 - Pending PCB and PAH analytical results
- Rolling SWAC Calculation
 - Residual sand cover placement considerations



CH2MHILL

- Sediment Coring vs. Surface Sampling
 - Sediment Coring
 - <u>Can</u> provide data for entire un-dredged inventory profile
 - Gives complete picture for re-dredge extent
 - Takes more front end time to collect (8-12 locations p/day)
 - Increases sample and data management needs
 - Surface Sampling
 - Fast collection rate (16-24 locations p/day)
 - May require additional sampling after re-dredge
 - Does not provide lithology information of un-dredged inventory



- Dredge Management Units (DMU)
 - Provides spacial management of dredge extents
 - 81 DMU's within project Areas 1-3
 - DMU Size Determination
 - Each DMU approximately 110 feet square
 - Investigation dataset sample density considerations
 - Analytical Model considerations
 - Dredge cycle time and scow capacity (~1500 cy p/ foot dredged)

- Sample Resolution Considerations
 - Sample Depth Selection
 - Determined by the anticipated un-dredged inventory thickness
 - Collected to 2 or 4-feet (DMU dependant)
 - Sample Interval Determination
 - Dredge and GPS vertical tolerance limitations
 - Bucket Capacity water vs. sediment
 - (2) 0.5 ft intervals to 1 ft & 1 ft intervals > 1 ft
 - DMU Sample Distribution
 - (1) primary and (4) sub-grid sample locations per DMU
 - Primary location initially collected and surface samples analyzed. Sub-surface samples archived.
 - Sub-grid locations collected and analyzed pending result of primary location

CH2MHILL

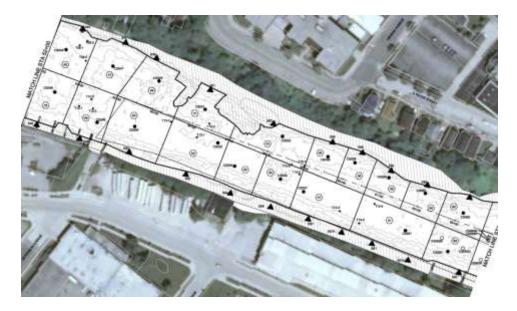
- Analyzing vs. Archiving Samples
 - Cost Implications
 - Analytical costs
 - Sample management and reporting time
 - Data Need Prioritization
 - Are all data results critical at that same time?
 - What's the laboratory's capacity?
 - Combined Approach
 - Quick turn analysis of samples critical for triggering re-dredge
 - Archived samples to be used for delineating horizontal and vertical re-dredge extent
 - Normal analytical turn around for samples non-critical for redredge

TSCA Confirmation Sampling

Purpose: Confirm complete removal of TSCA material

- 14 TSCA areas with 43 independent TSCA sample locations
 - 1 location per 6,000 sf, with a minimum of 3 locations per TSCA area
 - Randomly located in grid pattern
 - TSCA boundary determined by analytical model

- TSCA Confirmation Sampling (Cont.)
 - Collected in 1-foot increments to 4 feet or refusal.
 - Composite Surface sample (0-1 ft)
 - Collected from each location within respective TSCA area sent for quick-turn analysis
 - Reduced number of samples initially analyzed
 - Grab samples
 - Grab samples of each interval stored onsite pending composite sample results
 - Grab samples used to define vertical and horizontal extent of TSCA material for redredge considerations



Shoreline Sample Locations

Purpose: Characterize in-situ concentration of sediments undredged due to offsets from shoreline

- Project liability and property owner considerations
- Utilization of existing data
- Implemented into post remediation SWAC calculations

CH2MHILL

Data Collection and Evaluation

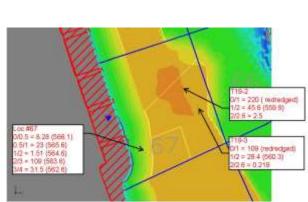
Selection of Sampling Technology / Method

Data Collection and Evaluation

- Critical Data Needs
 - Analytical
 - Total PCB data
 - Total PAH data

	Location ID	Sample ID	Sample Date	Total PCBs ¹ (mg/kg)	Total of 13 PAHs ⁴ (mg/kg)	Northing (WI SPS)	Easting (WI SPS)	Water Elevation (NAVD65)	Elevation (if from LWD)	Water Depth (ff)	Surface Elevation (NAVD88)	Core Penetration (ft)	Core Recovery (ft)
2	CS040	SR-CS040-0.0/0.5	10/25/2012	2.09		2571754.641	\$49075.009	578.93	-1.07	7.3	069.63	2.5	1,8
	CS040	SR-CS040-0.5/1.0	10/25/2012	0.162	29217	2571754.641	545075.006	576.95	-1.07	7.3	569.63	2.5	1.8
	C8840	SR-CS040-1.0/1.8	10/25/2012		1071.1	2571754:641	848075,008	576.93	-1.07	7.3	565.63	2.5	1.8
3	CS040-1	SR-CS040-1-0.0/0.5	12/12/2012	0.512 J	0 045 J	2571750.295	648069.897	576.2	-1.8	11.6	564.6	3	2.5
	C5040-1	SR-CS040-1-0.5/1.0	12/12/2012		6427.3	2571750.295	646009.697	576.2	-1.6	11.0	564.0	3	2.5
	CS040-1	SR-CS040-1-1.0/2.0	12/12/2012	3	105.01 4	2571750.295	646069.897	578.2	1.8	11.6	564.6	3	2.5
	CI5040-1	SR-CS040-1-2.0/2.5	12/12/2012	1	2.9355	2571750.295	646069.807	576.2	-1.8	11.6	564.6	3	25
TR	CIS040A	SR-C5040A-0.0/0.5	10/25/2012		309 43	2571788 157	\$45108.927	577.06	-0.9M	9.5	567.58	2.8	2.1
	CS040A	SR-CS040A-0.5/1.0	10/25/2012		1621.8	2571788.157	546108.927	577.06	-0.94	9.5	567.56	2.8	25
	CS040A	SR-C8040A-1.0/1.7	10/25/2012	8	567.1	2571788.157	646108.927	577.06	-0.94	9.5	567.56	2.8	2.1
	C8040A	SR-CS0404-1.7/2.1	10/25/2012	8	20.529	2571788.157	846105.927	577.06	-0.94	9.5	567.56	2.8	21
10	CS0408	SR-CS0408-0.0/0.5	10/25/2012		11.639	2571808.453	645000 479	576.927	-1.073	6.8	570.127	47	3.2
	CS0408	SR-CS040B-0.5/1.0	10/25/2012		18,931	2571808.453	646060.479	576.927	-1.073	8.8	570.127	4.7	3.2
	C50408	SR-CS0406-1.0/2.0	10/25/2012		51 318	2571806.453	646060.479	576.627	+1.073	6.8	\$70,127	4.7	32
	CS0408	SR-CS0408-2.0/3.2	10/25/2012		901.0	2571806 453	646060.479	576.927	-1.073	6.6	570.127	4.7	3.2
8	C\$040C	SR-CS040C-0.0/0.5	10/25/2012		5.641	2571723.067	648042.937	576.87	-1.13	6.8	570.07	2	1.6
	C5040C	SR-CS040C-0.5/1.0	10/25/2012		8.791	2571723.067	649042.937	576.67	-1.13	6.8	570.07	2	1.6
	CS040C	SR-CS040C-1.0/1.6	10/25/2012		3.544	2571723.067	846042.937	576.87	-1.13	8.8	570.07	2	1.8
8	CS0400	SR-CS040D-0.0/0.5	10/25/2012	-	7.3577	2571706.307	645085.419	576.93	-1.07	8.5	566.63	1.5	1.6
	C5040D	SR-CS0400-0.5/1.0	10/25/2012	6 👘	29.168	2571708.397	646085.419	576.93	-1.00*	8.5	566.63	1.6	1.5
	CS0400	SR-CS040D 1 0/1.8	10/25/2012		38.112	2571706.397	646085.419	578.93	-1.07	8.1	568.83	1.8	1.8

- Physical
 - As sampled XY Coordinates
 - Elevation of sediment surface (bathymetric and static survey data)
 - Sediment descriptions (texture, odors, sheen, etc.)
 - Sediment core penetration and recovery


Re-Dredge Design and Implementation

- Re-Dredge Design
 - Collaborative Effort
 - USEPA, WDNR, RTJV, and CH2M HILL
 - Superfund project updates
 - Re-dredge boundary and elevation determination
 - Re-Dredge Design Exports
 - XYZ data (.txt file)
 - Re-dredge boundary (.dwg file)

Remedial Design

Post-Dredge Bathymetry

Working Re-Dredge Design

Final Re-Dredge Design

Copyright 2013 by CH2M HILL • Company Confidential

CH2MHILL.

Re-Dredge Design and Implementation

- Re-Dredge Implementation Summary
 - Primary Re-Dredge Areas
 - PCB's Area 3 (navigation channel)
 - PAH's Area 2 (Camp Marina)
 - Re-Dredge Volume Summary
 - Total Re-Dredge Volume: 9,208 cy (~6% of total dredged)
 - Non-TSCA and PAHs = 7,761 cy
 - TSCA = 1,447 cy

Lessons Learned

- Sampling Technology Evaluation
 - Vibracore vs. manual coring methods
 - Record low water levels
- Ideal vs. Implementable
 - Establish data objectives
 - Discuss implementation with dredge contractor

Questions / Discussion