

Soup to Nuts: An Overview of the Engineering Consultant's Dredge Design Process

Developed By: Dan Binkney and Steve Garbaciak

April 17, 2013

Outline

Purpose: An overview of the dredge design process by an environmental engineering consultant.

- 1. Overview
- 2. Typical Data Requirements
- 3. Dredge Plan Development
- 4. QA/QC and Constructability Review Process
- 5. Implementation

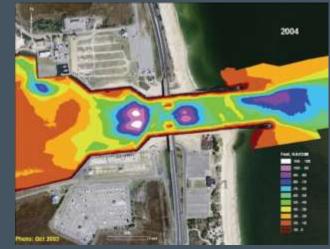
Overview

This presentation will focus on the engineering consultant's design process to create a dredge plan.

Assumes the overall design is acceptable.

How does a proposed dredge footprint go from paper to implementation?




Figure 2. Flowchart illustrating environmental evaluation/design sequence.

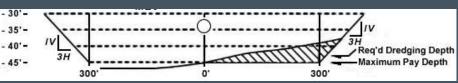
ERDC/EL TR-08-29

Typical Data Requirements

Existing Conditions

- 1. Existing Bathymetry
 - Hydrographic survey
 - Supplemental topography
- 2. Current or flow data
- 3. Map of infrastructure
 - Bridges, docks, piles, utilities, etc.
- 4. High subgrade areas defined

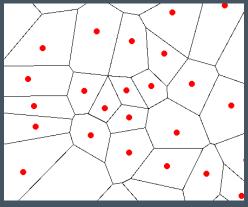
Delaware Dept. of Transportation, 2013

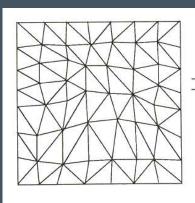

Typical Data Requirements

Regulatory or Project Requirements

- 1. Engineering Constraints
 - Steepness of side slopes
 - Over dredge allowance
 - Utilities or Infrastructure
- 2. High Subgrade
- 3. Navigation channel or basin requirements
- 4. Riparian requirements

Port of Los Angeles, 2013




http://education.usace.army.mil/navigation/, 2013


Typical Data Requirements

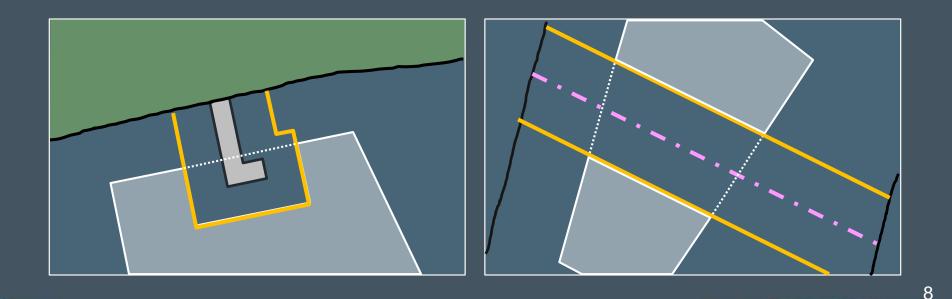
Basis of Design

- 1. Data density, in part, determines the basis of the actual dredge plan surface
 - Geostatistical model
 - Manual engineering (e.g., Thiessen Polygons)

Narod.ru, 2013

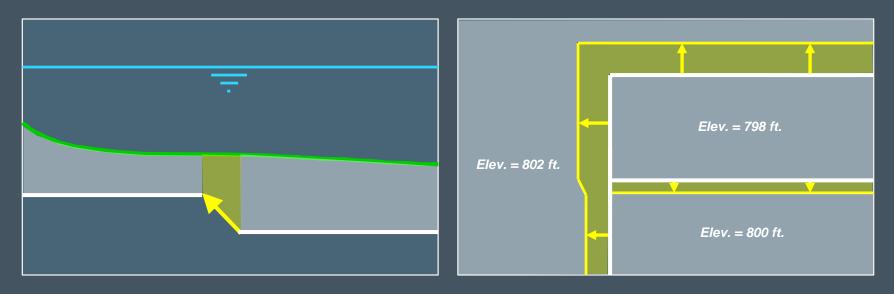
Atlab.iis.u-tokyo.ac.jp, 2013

C ANCHOR

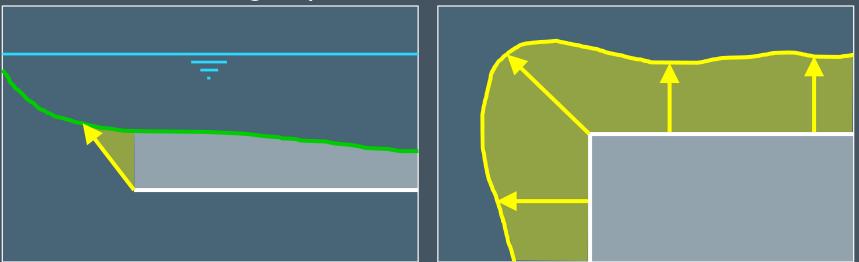

- Development of the dredge plan is completed using 3-D software
 - (AutoCAD: Land Desktop, Civil 3D, etc.)
- 3-D dredge plan is constructed, reviewed, and refined in real-time

BATHYMETRY -

Targets Targets Step 2: Targets: Specify the daylight target you are grading to (bufface, elevation or datance). Create one or more legions, and charge the target for each individual region.	Grading Scheme Name: Grading Target Surface: TARGET_DREDGE_DESKIN_SURFAL • Bevaton: 100.50 C Relative @ Absolute Distance: 0.00 C Gal @ Re Local Overrides of Grading Target (Regiona) Add Region: Delete Region: Reset Regions. Region Start Station: End Station: Target 1 0.00 384.34 Surface: TARGET_DREDGE.	DESIGN DREDGE P	LOS 0.5	DS 0.4	
		100'	150'	200'	250'
	Minimum Region Length 1.00	Anchor QEA, 2013	5		
Help	Cancel Cancel Need > Finish		ALL UNA	1 %	ANCH

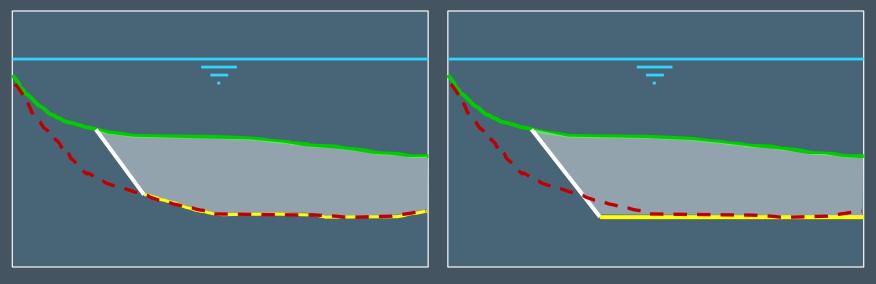

Plan View Design Components

- Incorporate infrastructure offsets
- High Subgrade

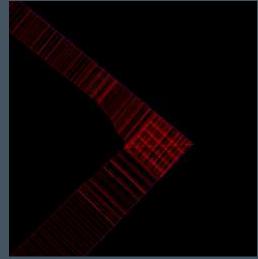

Three Dimensional Design Components

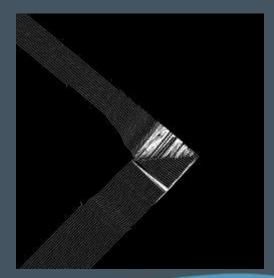
- Grading interior side slopes
- Varying elevation/depth prisms

Three Dimensional Design Components


- Grading exterior side slopes
- Daylighted to bathymetry
 - Grading "up" or "down"

Three Dimensional Design Components

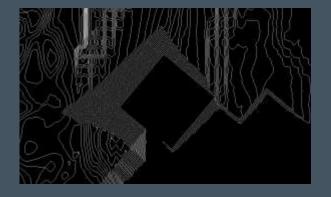

- Interior "infill" surface
 - Geostatistical model surface or flat elevation or depth prisms

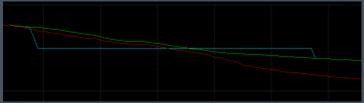


Typical Deliverables

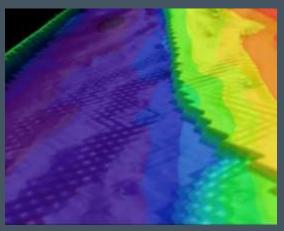
- Footprint
 - Shapes (.dxf) and/or Vertices (.xyz)
- Daylight line for Design and Overdredge Surfaces
 - Outer extents of dredging
- Design and Overdredge surface (.tin, .xml, or .xyz)

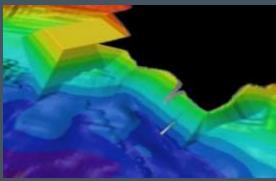
- QA/QC Steps Taken During the Initial Design Process
- Corners
 - Overlapping CAD lines
- Side Slopes
 - Angle and intersections
- Design versus Overdredge
- Dredge Surface versus Bathymetry
- Final Contours





QA/QC Steps Taken Following the Initial Design Process


- Volumetric analysis
 - Comparison of bathymetry versus design
 - Comparison of design versus over-dredge surface
- P.E. Review
 - Constructability
 - Does the dredge plan meet the objectives?



QA/QC Steps Taken Following the Initial Design Process

- Constructability review
 - Slope steepness
 - Dredge plan surface variability (smoothness)
 - Design versus Overdredge
 surface
- Typical review software: Hypack©, fledermaus, AutoCAD

J.F. Brennan, 2013

How to Help the Consultant During the Review Process

- If revisions are required, inform the consultant in writing, with example figures or images provided
- Provide enough time for the QA/QC process to cycle through again

Implementation

The Consultant's role During and Following Construction

- The consultant is prepared to make additional revisions as required by field conditions
- Document the as-built conditions (post-dredge survey) for re-dredge design or inclusion into design of adjacent areas
- Dredged sediment volume tracking

References

USACE Technical Guideline

Palermo, M., Schroeder, P., Estes, T., and Francingues, N. *Technical Guidelines for Environmental Dredging of Contaminated Sediments*. September, 2008. U.S. Army Corps of Engineers, Engineer Research and Development Center. ERDC/EL TR-08-29.