
IN WATER REMEDIATION OF SEAFOODWASTE ACCUMULATIONS BY REMOVAL AND CAPPING

BY: DANIEL J. PICKERING

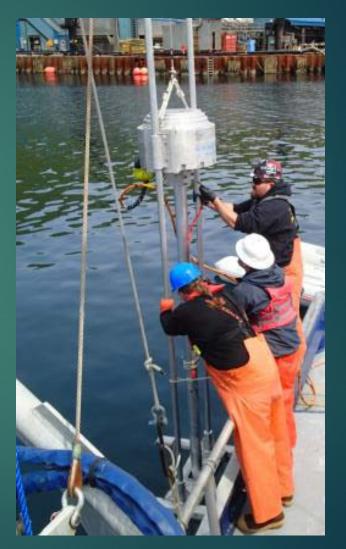
Background

ODCON XX

Background

- Seafood Processing in Akutan Harbor
- Floating Processors

► Land Facility

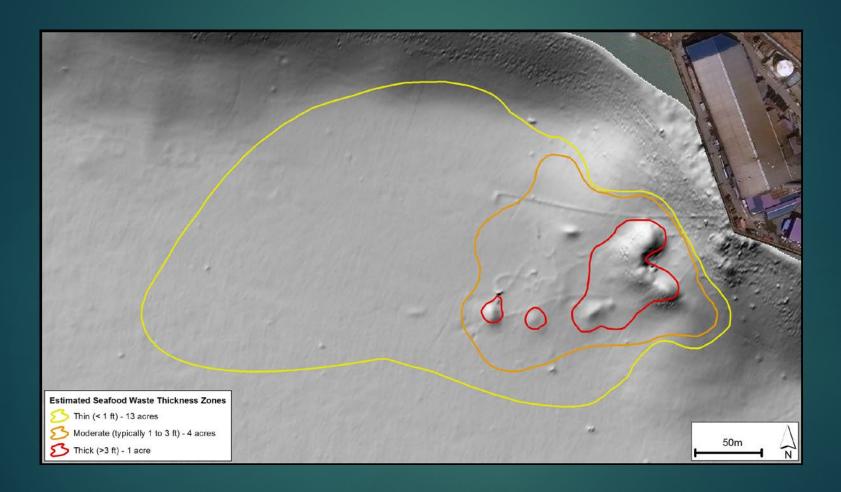


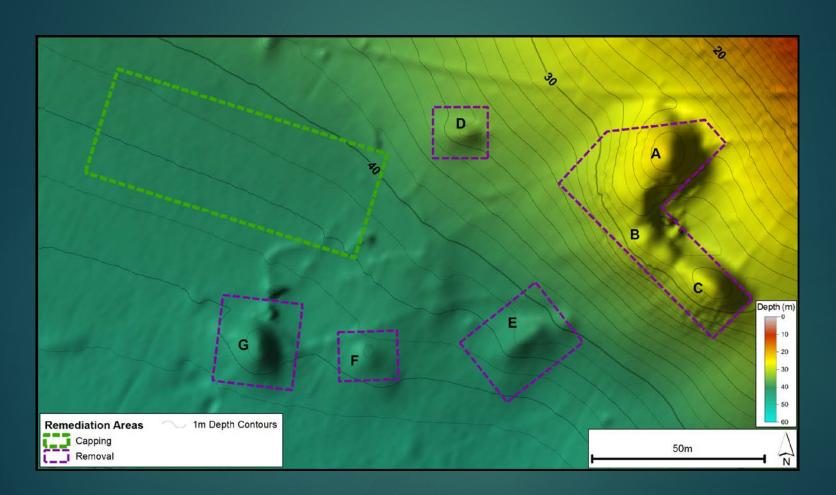
Seafood Waste Characterization:

- Sediment Profile Images
- Coring
 - Boxcores
 - Vibracores

Seafood Waste Characterization:

- ► Two Primary Types of Waste
 - Coarse Fish Bone


► Fine Decomposing Organics



Seafood Waste Piles

Remediation Work Area

Pile Remediation – Pilot Projects

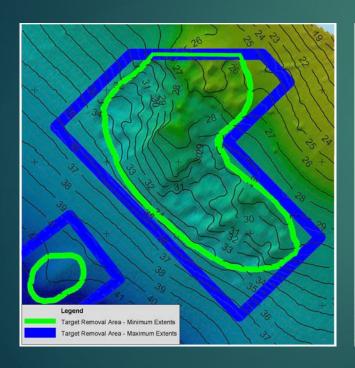
Removal Pilot Objective

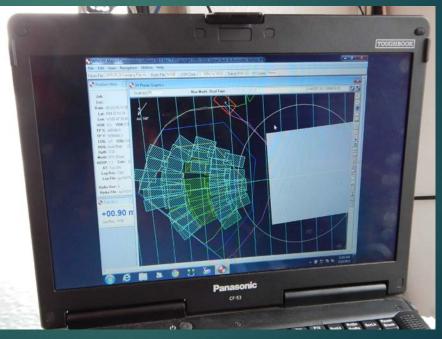
Remove a portion of the seafood waste pile from locations where there is thick waste and moderate waste, where waste thickness has the potential to preclude natural recovery.

Capping Pilot Objective

Place clean sediment that is representative of the sediments in Akutan Harbor over a target capping area of 2,500 square meters.

Vessels and Equipment


Removal Pilot - Quantities


Area ID	Target Area (m²)	Target Removal Volume (m³)	Actual Area (m²)	Actual Removal Volume (m³)
A, B, & C	1930	4530	2350	6530
D	45	30	120	50
Ε	145	120	255	160
F	15	5	15	20
G	145	135	215	240
Total	2280	4820	2955	7000

Removal Pilot - CQA

- Bathymetric Surveys
- ► WINOPS

Removal Pilot – Material

Identification

Decayed Seafood Waste

- ▶ Bone Waste
- Crab Waste
- ▶ Native Sediment

VODCON XXI

Removal Pilot – Environment Monitoring

- Wildlife Observer Program
- Water Quality Monitoring Program

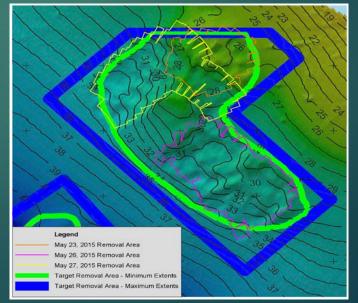
	Average Turbidity (NTU)
Baseline	0.9
Pre-Removal	0.5
Removal	0.7
Post-Removal	0.7

Removal Pilot – Lessons Learned

Cycle Times: Water depth between 25 and 45 meters

Date	Daily Cycle Time Average (mm:ss)	Daily Bucket Count	
5/23/2015	01:40	114	
5/26/2015	01:44	212	
5/27/2015	01:53	214	
5/28/2015	01:34	103	
5/29/2015	01:54	238	
5/30/2015	01:49	238	
5/31/2015	02:01	243	

- Seafood Waste Characteristics:
 - Minor Sulfur Oder
 - Fishbone Material:
 - Stackable
 - Disassociates Freely Releasing Entrained Water



Removal Pilot - Lessons Learned

- Clamshell Bucket:
 - Lighter Smooth Cutting Bucket Limited Removal of Native Sediment
 - Closed

 Environmental
 Bucket
 Recommended
- Horizontal Accuracy

Capping Pilot

Capping Pilot

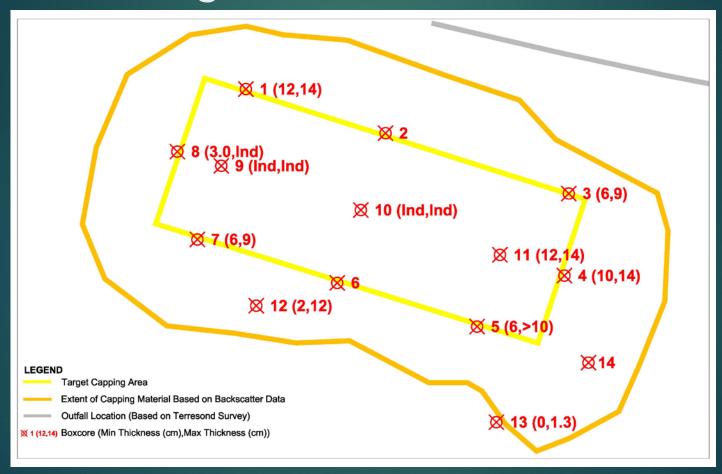
Capping Material

Capping Pilot

- Capping Area
 - 2,500 square meters
- Capping Rate
 - Target Thickness of 15 cm (6 in)
 - Placed Volume Equivalent of 30 cm (12 in)
- Placement Method

Capping Pilot – Confirmatory Monitoring

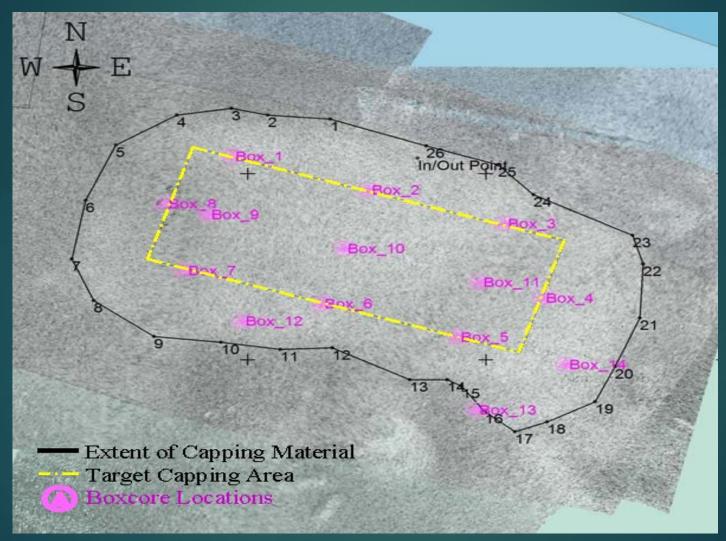
Boxcore Station	Minimum Cap Thickness (cm)	Maximum Cap Thickness (cm)	Continuous Surface	Native Sediment Encountered
1	12	14	Yes	Yes
3	6	9	Yes	Yes
4	10	14	Yes	Yes
5	6	>10	Yes	Yes
7	6	9	Yes	Yes
8*	3.0	Ind	Yes	No
9**	Ind	Ind	Ind	No
10**	Ind	Ind	Ind	No
11	12	14	Yes	Yes
12	2	12	Yes	Yes
13	0	1.3	No	Yes


"Ind" indicates indeterminate thickness

^{**}Cobbles in jaws. Small amount of material retained was cap material.

^{*} Partial recovery due to cobbles in jaws of box core.

Capping Pilot – Confirmatory Monitoring


Capping Pilot – Lessons Learned

Capping through 40 meters (130 feet) of water.

- Release Area: 2,500 square meters
 - Actual Cap Area: 2.5 to 3 times the Release Area
- Volume of Cap Material: 30 cm x 2,500 sq. m
 - Actual Cap Thickness: Average of 10 cm
 - Cap thickness was 1/3 of the thickness of material deposited in the Release Area.

Capping Pilot – Lessons Learned

Questions

