

Content

- While regulations help guide environmental awareness, they can also indirectly help your financial bottom line
- Regulations (EAL's)
- Benefits of the EAL Regulations

Topics

- Technically advanced lubricants increase equipment longevity and efficiency
- Reduce labor cost, equipment down time, and eliminate disposal cost
- Spillage concerns / cleanup cost
- Testing existing oil
- Filtration

Regulations

- National and Regional
- Permits
- Equipment limitations and materials (like EAL's)
- EPA Vessel General Permit
- 2.2.9 All commercial vessels <u>must use</u> "environmentally acceptable lubricants"
- "biodegradable", "minimally-toxic", not "bioaccumulative"
- "technically infeasible"

Regulation Benefits

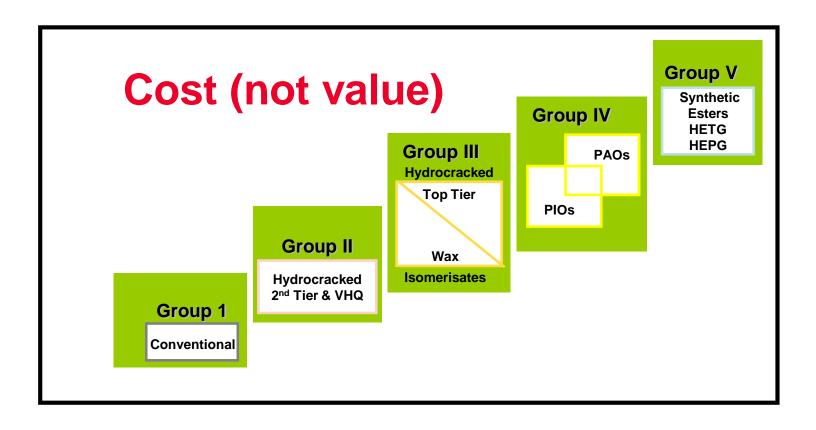
- Improves our quality of life
- Drives you to look at current technology
- Helps with best business practices
- Can eliminate competition
- Can save you time and money
- Use compliance to win bids

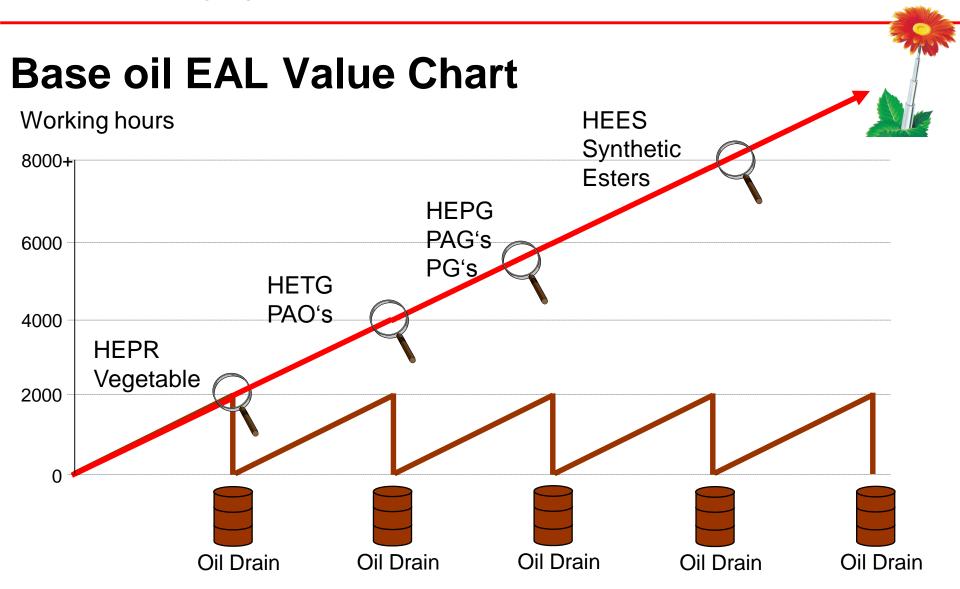
Why do we use lubricant?

- Prevent wear (save our equipment)
- Reduce friction (save energy)
- Remove heat
- Prevent rust and corrosion
- Remove contaminants

Don't get fooled

HEPR PAO's use the word (<u>synthetic</u>)
HETG Vegetable use the word (natural <u>ester</u>)
HEPG PAG's use the word (<u>synthetic</u>)
HEES (<u>un</u>saturated <u>synthetic</u> esters)


The above are not equal to Saturated Esters:


HEES (saturated synthetic ester)

Synthetic = compounds formed through a chemical process. Ester = acid and alcohol

As we move up in **groups**, the number of impurities are reduced. As the complexity for removing impurities rises so will the cost of the base oil.

Approvals / specs based on current formulation!

Cost Calculator:

- Operation details
- Lubricant cost
- Cost of change
- Lost production
- Repair Maintenance cost
- Energy efficiency

Total cost Payback Period Total life savings

PANOL Swiss I	ligh-Qual	ity Oil	1		
GREENMA	G	IÎNE	®	1	
Cost of labour	\$/Hour	2	4		
Hourly value of production	\$/Hour	5	0		
LUBRICANT		Actual	Proposea	71/	
Product		Mobil DTE	Panolin HLP Synth		
LUBRICATION - COST OF OIL		WOON DIL	Cyriai	Saving	% Bene
Oil drain period	Hours	2,500	25,000	22,500	
Number of oil changes per year	Per Year	0.2	0.0	0.19	94%
Top-up volume per year	Litres	100.0	100.0	0.19	94%
Price of Oil	\$/Litre	4	12		
Top-up cost per oil drain	\$	400	1,200		
Annual cost of lubricant	\$	32,400	6,960	25,440	79%
7 tillidai cost ol labileant	Ψ	32,400	0,500	20,440	7 5 70
LUBRICATION - COST OF OIL CHANGE					
Cost of consumables per oil change	\$	50	20		
Time for oil change	Ф Hours	30			
Annual cost of oil changes	\$	114	7	108	94%
, il	•		·	.00	0.70
LOST PRODUCTION					
	Hours/Y				
Lost production for oil changes	ears				#DIV/0
Cost of downtime due to oil					
change	\$	1	1		
REPAIR & MAINTENANCE -					
COSTS					
Cost of replacing failed					
components	\$				
Time to replace failed components		1	0		
Breakdown frequency	Year				#DIV/0
Annual maintenance costs	\$				#DIV/0
LOST PRODUCTION					
Lost production due to repair &	Hours/Y				
maint.	ears				#DIV/0
Cost of downtime due to repai	r				
& maint.	\$				#DIV/0
ENERGY EFFICIENCY					
	\$				3%
Annual energy cost	φ				3%
TOTAL ANUAL COST PER					
MACHINE	\$	32,515	6,968	25,548	79%
TOTAL ANUAL COSTS	\$	32,515	6,968	25,548	79%
PAYBACK PERIOD	Ψ	,	Months	20,040	13/0
, , , b, or , Errob		11.33	Ominio		
TOTAL EQUIPMENT LIFE					
SAVINGS (10 yr)	\$	325,154	69,679	k	79%

Direct Cost

- Premature equipment failure
- Moving equipment
- Labor cost
- New lubricant cost
- Hose & Seal cost
- Disposal cost

Indirect Cost

- Downtime
- Non-Compliance documentation
- Spill clean up & delays
- Spill documentation
- Spill fines / penalties
- Losing bids

Oil sampling

- Testing existing oil (EAL's in use)
- Zero sample (mineral oil % / TAN #)
- Make adjustments (filtration / drain % and top up)
- Ability to achieve longevity

DEME Big Boss:

8,000 gal. HLP SYNTH 68 3 decades of work 58,150 working hours

Current Oil Sample Viscosity 63 TAN 3.6 (0.7 though >5.0) Cleanliness 21/19/15

Boskalis Nordic Giant: 3,000 gal. HLP SYNTH 46 39,000 working hours

Current Oil Sample Viscosity 45.9 TAN 1.9 (0.7 though >5.0) Cleanliness 21/18/13

Heron Construction:

3,000 gal. HLP SYNTH 68 4 years 24,000 working hours

Current Oil Sample Viscosity 65 TAN 3.7 (0.7 though >5.0) Cleanliness 21/15/11

Boskalis Australia Storken:

3,000 gal. HLP SYNTH 68 22,050 working hours

Current Oil Sample Viscosity 64 TAN 2.2 (0.7 though >5.0) Cleanliness 18/15/12

Boskalis Baldur:

HLP SYNTH 68 6 years no fluid change

GLDD Illinois:

2,000 gal. EP GEAR SYNTH 220

Horsburgh & Scott BIOGREASE EP 2

Current Oil Sample Viscosity 209 @ 40C TAN 1.4 (0.7 though >5.0)

GLDD California:

550 gal. HLP SYNTH 68 Globaltech Motors

Dielectric strength Moisture protection Water separation

GLDD New York:

7,000 gal. HLP SYNTH 46 Liebherr 996

Current Oil Sample
Viscosity 48
Water # .055
TAN .37 (0.7 though >5.0)
Mineral content <5

Prevention

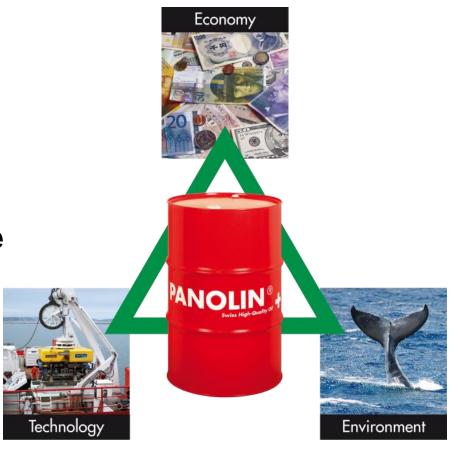
- Filtration
- Cardev systems
- Pull out contaminates / water moisture
- Renew fluid (fluids ability)

Machiavelli:

2,400 gal. HLP SYNTH 687 years of workNo fluid change

Oil Samples taken every 3K hours 2X3 Cardev Filtration Unit

PANOLIN GREENMARINE = SUSTAINABILITY


Our credo:

Only a concept which is

- economically viable
- technically mature
- environmentally considerate

can be truly sustainable.

Thank you.

