TAMPA HARBOR MAINTENANCE DREDGING EGMONT KEY BENEFICIAL RE-USE

High Silt Content Material Placement Traditional Template vs.

Cross Shore Swash Zone (CSSZ)

Coraggio Maglio, PE, Jase D. Ousley, PG, Dr. Aubree Hershorin, & Millan Mora, PE

US Army Corps of Engineers (USACE) Engineer Research and Development Center Coastal and Hydraulics Laboratory &

USACE Jacksonville District

23 June 2015

Outline

Background

- Ideal opportunity for R&D to address environmental concerns and regulations
- Egmont Key National Wildlife Refuge "Sand Rule"
- Material is approx. 20% "fines" (passing 230 sieve)
- Definitions and Example Projects
- Beneficial reuse projects 2001, 2006, and 2011
- Time series aerials

Dredging and Placement

- Volumes and losses
- Compaction Cone Penetrometer
- Mass Balance of "fines"
- Fines Content, Density, Munsell Color
- Light Attenuation and Turbidity

Conclusions

Traditional vs. Cross Shore Swash Zone Placement

Acknowledgments

Definitions

• Traditional Placement – placement of material to "build a beach" using longitudinal dikes to increase settlement. This projects purpose is to create a wide flat dry beach berm.

Definitions

• Cross Shore Swash Zone Placement (CSSZ) – placement of dredged material by discharging material directly into the swash zone until a delta builds and then extending outfall shore perpendicular thus building a "point" (salient) feature.

ERDC Engineer Research and Development Center

21 Feb 15

29 Apr 15

Images Courtesy of GLDD

Case Examples – Mayport 1972

Cross Shore Swash Zone Placement (CSSZ)

Case Examples - Sand groynes Delfland 2009

- 3 concentrated nourishments 200k m³ each
- Uniformly redistributed over a stretch of coast of about
 2.5km by the impact of waves and currents
- https://publicwiki.deltares.nl/display/BWN/Building+Block+-+Feeder+beaches+-+Practical+Applications

Case Examples - Delfland Sand Engine 2011

- Concentrated nourishments 28M m³
- Intertidal ponds were intentional for added habitat
- http://deltaproof.stowa.nl/Publicaties/deltafact/Sand_nourishments.aspx?pld=53#COSTS_AND_BENEFITS

Time-series aerial photos

1942 201**4**9**2**60**4**98**2**

Previous Placement Events

2005

Slides Courtesy of USF

ERDC Engineer Research and Development Center

Previous BU - Egmont Key 2001, 2006 & 2011

Ebb dominated system

Dredging and Placement

UAV flight aerial 16 March 2015

Dredging and Placement Volumes

Traditional (Nor	rth) Placement A	\rea:
-------------------------	------------------	-------

	Cubic Yards (cy)	% of Total
Dredged in Channel	500,037	100.0%
Pumped to Beach	319,712	63.9%
Surveyed on Beach	222,068	44.4%

Cross Shore Swash Zone Placement Area:

	Cubic Yards (cy)	% of Total
Dredged in Channel	180,512	100.0%
Pumped to Beach	107,225	59.4%
Surveyed on Beach	68,479	37.9%

Project Monitoring

Cone Penetrometer

USF Line 17 Pre-Placement

Depth (in)	0"-6"	6"-12"	12"-18"	307 12"-16" 350 500
Min (psi)	100	100	198	360 450 550 450
Max (psi)	580	700	617	443 12"-16" 600
Avg (psi)	293	406	457	500 550 610 600
Median				450 552
(psi)	295	431	515	12"-16" 570 580 520
# samples	19	19	19	500 550 553
Refusals	1	4	5	12"-16" 160
% Refusal	5%	21%	26%	210 220 160 250

	PUSI-FI	acemen	350	Refutal	
	5	1/19/2	005 0'-0'	6'-12'	12"-16"
					SSO Refusal
Donth (in)	011 611	611 4011	40"	40"	500
Depth (in)	0"-6"	6"-12"	12"-	10	12"-16"
		40-			Refusal (shell)
Min (psi)	50	125		200	200
					-705.0
Max (psi)	600	700		600	Refusal
*• •	000				S00 Refusal (shell)
Avg (psi)	328	482		436	(1)
	020	702		100	300
Median					400 600
Modian					Refusal
(psi)	300	500		500	
(60.)	000	000	`		
# samples	21	21		21	200 600
	4 1	Z 1		∠ 1	436
Refusals	3	6		10	500
Refusals	3	O		10	
% Refusal	14%	29%	1	8%	10
76 Keilisai	14%	/9%	4	·0~/\	4642

USF Line 6

USF Line

Avg.	325	273	198
	USF Line 17	Berm	
	0"-6"	6"-12"	12"-16"
	340	700	500
	280	650	630
	310	640	450
	290	660	560
	300	660	500
	250	670	450
Avg.	295	663	515
	USF Line 17	Foreshore	
	0"-6"	6"-12"	12"-16"
	450	630	650
	450	560	500
	410	650	490
	370	450	460
	340	470	500
	370	500	550
Avg.	398	543	525
	USF Line 17	*Dune	
	0"-6"	6"-12"	12"-16"
	570	570	730
	Defined.	400	con

• Increase in refusals due shell hash areas

Avg.	466	557	617
*Dune is	a relic fill, now a	soil with higher	elevation vegeta
	11/20/2014		
1	0"-6"	6"-12"	12"-16"
2	580	Refusal (shell)	
3	100	200	Refusal (shell)
4	360	590	580
5	450	500	300
	11/21/2014		
6	150	100	400
7	150	350	425
8	200	600	Refusal
9	250	700	Refusal
10	250	200	Refusal
11	300	500	Refusal

Mass Balance – Egmont Key 2014

Tampa Harbor M	1D - Egmo	nt Key 2014
	# of	Sample by weight Fines
	Samples	(passing 230 sieve)
In-situ Channel	80	
Discharge Slurry	27	
Swash zone	27	
Beach samples	22	

100% slurry water conveyed to

Slurry and swash zone sampling

Relationships

 Swash Zone samples carried 1 the beach template, thus leaving

Fines Content and Density

Tampa Harbor MD - Egmont Key 2014			
	# of	Avg. % by wt.	
	Samples	passing 230 sieve	
In-situ	80	20.7	
pre-Beach	6	0.03	
post-Dredged	21	0.51	
Traditional	14	0.52*	
CSSZ	7	0.49 *	

	-6		
	# of	Value avg.	%
Density	Samples	(kg/m3)	Greator
pre-Beach	7	1405.1	0.0%
post-Dredged	17	1471.6	4.7%
Traditional	11	1476.0	5.0%
CSSZ	6	1463.5	4.2%

*Sampling occurred within 72 hours of placement completion

Munsell Color

Tampa Harbor MD - Egmont Key 2014			
	# of Value		
	Samples	avg.	
In-situ	80	4.36*	
pre-Beach	13	5.9	
post-Dredged	24	5.3	
Traditional	16	5.0	
CSSZ	8	5.9	

*Munsell color value<5 unacceptable for beach placement in Florida

NOTES: Triplicate measurements of hue, value, and chroma were collected from three areas on each moist sand sample using a digital colorimeter (CR-400, Konica Minolta, Osaka, Japan).

Light Attenuation Long-term Monitoring

Egmont Key, FL Long-term Deployment Map 14 Nov – 15 Dec

Image Courtesy of GLDD

Light Attenuation Monitoring – Tire

Light Attenuation Long-term Monitoring

CSSZ Drawbacks vs. Traditional Placement

Issues

- Material is not immediately visible to public
- Remediation for unacceptable material far more difficult
- Egmont Key not identical to other projects, low energy, with inlets
- Each contractor has different operations: longitudinal dike length, equipment, and methodology

Risks

 If parameters imposed on nearshore placement are more restrictive this placement method could become more expensive than traditional beach placement

Project shutdowns for turbidity

CSSZ Benefits vs. Traditional Placement

Less linear feet of beach impacted for equivalent volume

Reduced environmental Impacts

- · Turtle nest relocations
- Ponding
- Cementation
- Munsell Color
- Shorebird impacts
- Lower cost
 - Construction less beach equipment
 - Reduced pipeline extensions
 - Maintenance less escarpment, tilling
- Reduced beach traditional use impacts
 - Sunbathing and Water sports
- Another tool in the BU toolbox
- Purely performance based regulations
 - More beneficial reuse
 - Lower costs better bids due to more

 Description of the perform work

equipment able to perform work

Image Courtesy of GLDD

Conclusions

- CSSZ placement operations within intent of "Sand Rule" – reasonable assurance
- Grain Size sampling indicates significant "fines" losses
 - 2.4% of original (in-situ) "fines" remaining on beach = 0.5% total
 - 98% of "fines" lost
- Munsell Color and Compaction similar to pre-conditions
- · Better RSM practice, better environmental practice, and

better economic practice

 Engineering with Nature (EwN)

BUILDING STRONG® Image Courtesy of GLDD

Acknowledgments

Great Lakes Dredge and Dock — Mr. Manny Vianzon, Ms. Lynn Nietfeld, Ms. Kate Mason, Mr. Michael Tolivar, Mr. Robert Ramsdell III, Mr. Bill Hanson
University of South Florida — Dr. Ping Wang, Mr. Zach Taylor, Mr. Mark Horwitz
U.S. Fish and Wildlife Service — Mr. Peter Plage and Mr. Stan Garner
Florida Department of Environmental Protection — Mr. Tom Watson
Tampa Bay Pilots Association — Ms. Leslie Head
Florida Fish and Wildlife Conservation Commission — Ms. Robbin Trindell
USACE Tampa Field Office — Mr. Andy Cummings, Ms. Tina Underwood, Ms. Erin Duffy
USACE Jacksonville District — Mr. Bryan Merrill, Mr. Mike Hensch, Mr. Vic Wilhelm, Mr. Tom Spencer.

USACE Engineer Research and Development Center - Dr. Katherine Brutsché, Mr. Matthew Taylor, Mr. John Bull, Ms. Cheryl Pollock, Dr. Deborah Shafer, Mr. Tommy Kirkland, Dr. Jacob Berkowitz, Mr. Jason Pietroski

U.S. Coast Guard – Mr. Darren Pauly, Mr. Ivan Meneses

