Annotating Video Acquired from a Benthic Sled Towed over Ocean Dredged Material Disposal Sites

Justin Wilkens¹, Jarod Norton²

¹USACE Engineer Research and Development Center

Environmental Laboratory

Vicksburg, MS

²USACE Portland District

Portland, OR

Innovative solutions for a safer, better world

BUILDING STRONG®

Presentation Outline

- 1. Monitoring open water placement sites
- 2. Differences between bottom trawl and benthic sled survey data
- 3. Video annotation
- 4. Automated or semi-automated video annotation

ERDC

Monitoring open water placement sites

- USACE Portland District maintains waterways through a variety of dredge projects
- Nearshore beneficial use sites used for the Mouth of Columbia River Federal Navigation Project
- Before, during and after placement, sites are commonly monitored

Astoria Canyon	0	
0	• 57	A The

Credit: USEPA Ocean Disposal Map website https://www.epa.gov/ocean-dumping/ocean-disposal-map/

Monitoring cont'd...

- Monitor ecological conditions of the placement sites
- Focuses on survey of fish and epibenthic invertebrates
- Helps to:
 - ► assess changes in population or community structure, and
 - ► to establish diversity indices over time

Bottom trawl survey

- Net is dragged along a pre-selected part of the ocean floor for a specific time and distance
- The net is retrieved and aquatic life is more closely examined and sorted into species
- Other data such as weight, length, condition can be recorded

Credit: marine stewardship council www.msc.org

Benthic Sled

- Towed along pre-selected part of the ocean floor for specific time and distance
- Sled usually equipped with an imaging system, lighting, and laser scale
- Post-survey analysis relies on annotations made by human observers

NOAA benthic sled

An illustration of a bottom contacting benthic sled towed along the seafloor. The sled is usually equipped with an image sensor.

Bottom Trawl vs Benthic Sled

Key Questions:

Is species identification comparable between the methods?

8

Is there a difference in overall density of organisms between the methods?

BUILDING STRONG®

Selection of studies comparing methods

Species Density							
species	Benthic sled	bottom trawl	image type	note	source		
Flatfish	94*	15	video	Density averaged for sites; mean and standard deviation of individuals per 100 m ²	Spencer et al. 2005		
Crabs	15*	2					
Age-0 flatfish	30	18					
Age 1+ flatfish	4	3					
shells	13*	3					
Chimaera	121	839*	video	Individual per km²	McIntyre et al. 2015		
Macrourids	189	497					
Molva sp.	62	43					
Mora moro	28	96					
Skates and Rays	64*	5					
Sharks	14	134*					
number of individuals	≈ >4 x	-	images	Individual per 100 m ²	Nybakken et al. 1998		
	18,145	2,291	images	N/A	Williams et al. 2015		
Species Richness							
number of taxa	57	190	images	N/A	Williams et al. 2015		
	14	19	images	N/A	Uzmann et al. 1977		

Video Annotation

How do you annotate videos?

BUILDING STRONG®

VARS- Annotation

Credit: NOAA benthic sled video footage at nearshore placement site, Mouth of Columbia River Federal Navigation Project (USACE)

Video Annotation and Reference System (VARS)

- Developed and used by the Monterey Bay Aquarium Research Institute for their deep-sea video annotations
- Users annotate a video frame, store the annotation in a database along with a frame grab and any ancillary data
- VARS includes three applications
 - ► Knowledgebase
 - Annotation

Automated Video Annotation

- Semi-automatically or automatically detect, classify and quantify animals in underwater video
- Limit the need and cost of a human annotator
- Potential to reduce the environmental impact of physically collected samples (e.g., bottom trawls) by improving the usefulness and effectiveness of underwater video surveys

Annotation automation

Credit: Danelle Cline, MBARI AVEDAC lead

ERDC

BUILDING STRONG®

Annotation automation

- Algorithms can successfully detect and track objects of interest
- Software is customized, computer intensive, commonly designed for specific needs, and often requires support to use successfully
- Limitations: images, lighting, turbidity and background noise
- Often limited to megafauna which are easier to detect and classify
- Regulatory and other biological assessments often focus on megafauna, so automation is achievable

Summary

- Mean density of aquatic organisms often times much greater for a benthic sled compared to a trawl survey, but species identification is limited
- Post-processing of video can be achieved by using video annotation software
- Automated software is customized, computer intensive, and requires support

17

 Because regulatory assessments often focus on megafauna the automatic detection systems should be the goal

Acknowledgements

USACE Portland District

Danelle Cline and Brian Schilling, MBARI

BUILDING STRONG®

