1

Mechanical Placement of Granular Activated Carbon Amended ENR Material in the Lower Duwamish Waterway: Design to Construction

DANIEL J. PICKERING, PE (DOF)

WEDA PACIFIC CHAPTER 2017 ANNUAL MEETING OCTOBER 25 – 27, 2017 PORTLAND, OR

Lower Duwamish Waterway Superfund Site

Pilot Project

Required by EPA

Project performed by:

Lower Duwamish Waterway Group (LDWG) 2

Boeing, City of Seattle, King County, Port of Seattle

Contracted by: King County

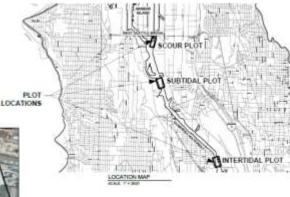
Contractor: Pacific Pile & Marine (PPM)

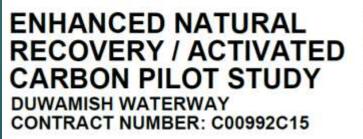
Consultant Team: AMECFW, DOF, Floyd Snider, GeoSyntec, Ramboll Environ

Activated Carbon Pilot Project

Ongoing Project

Placement Started Nov 28, 2016


Completed Feb 2017


3 Year Monitoring Y0 – Completed Y1 – 2018 Y2 - 2019 Y3 - 2020

ORAWING INDEX		
pair legi	DIRECTLO	Determine Auff
41	1996.1	COMEN WHET WORTH AND LOCATION MATS. DRAWING HERE:
*	- 1081	MOTOL EVENULS AND ABOREVIATIONE
101	1000	INCOME PLUT (MM SIZE ALL'INCOME)
194	100	INVESTIGAL PLOT (PARTICINE 128) PLATE VERY
	1084	INTERTION, PUT PM LINKS SHE AND STREET MANY
16	198	BOOLDN PLOT (MM SHIE IS IN) BECTION VARIAN
W.,	100	90009 FL21 999 534 to 0 10 10021594 (4894)
	180	INVESTIGATION AND A DESCRIPTION OF THE
	100	BUREAU AND BRANCH COURSEPON NEWS
18	108	INTERVISION, PLOT (RM 1 IN IN UNK AND 3 INTO 1 AND 300) INTO VALUE.
- 12	228.86	intervision short play and in line and it play have apportune values

3

- 0	PROJECT	WORKLO	CATION
ACILITY	V NAME	NA	

STREET ADDRESS: DUWAMISH WATERWAY CITY, STATE: SEATTLE & TURWILA, WA

Pilot Study Goals

- Verify that ENR amended with AC can be successfully applied in the LDW by monitoring physical placement success (uniformity of coverage and percent of carbon in a placed layer);
- Construction & Y0 This Presentation
- Evaluate performance of ENR/AC compared to ENR alone in locations with a range of polychlorinated biphenyl (PCB) concentrations;
- Assess potential impacts to the benthic community in ENR/AC compared to ENR alone; and
- Assess changes in bioavailability in ENR/AC compared to ENR alone.

ENR Materials Used

5

Grain sizes selected to balance stakeholder concerns, habitat considerations and technical issues.

<u>Subtidal Plot:</u> Sand

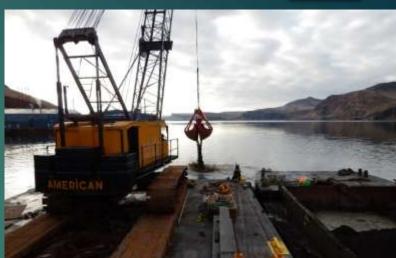
<u>Scour & Intertidal Plots:</u> Gravelly Sand

SAND E	NR MATERIAL
U.S. Standard Sieve Size	Percent Passing by Dry Weight
3/8"	100
U.S. No. 4	95-100
U.S. No. 16	45-80
U.S. No. 50	10-30
U.S. No. 100	2-10
U.S. No. 200	0-2

GRAVELLY SA	ND ENR MATERIAL
	Percent Passing by Dry
U.S. Standard Sieve Size	Weight
1-1/2"	100
3/4"	80-90
3/8"	50-80
U.S. No. 4	50% min
U.S. No. 16	10-30
U.S. No. 200	0-2

Activated Carbon Selection

Material Selection


- Cannot alter target ENR grain size
- Available in Pilot Project and potential full scale project quantities
- Use Bulk Activated Carbon
- Grain Size Selection finer or coarser
 - Ability to handle and place
 - Stability once placed
 - Effectiveness Short & Long Term
 - Adverse benthic effects
- Selected Size range 200 to 1000 Microns (~#70 to #18 Sieve, Fine to Coarse sand)

ENR/AC Placement Considerations

- Mixing/entrainment of underlying sediment
- ENR layer thickness
- Uniformity of AC in ENR layer
 - Segregation
 - Winnowing
- Surface release not practicable

Placement Method

Considerations

Pilot Project

- Use readily available equipment
- Methods that can be adapted for full scale
- Precision to reduce study variables – more than necessary for full scale

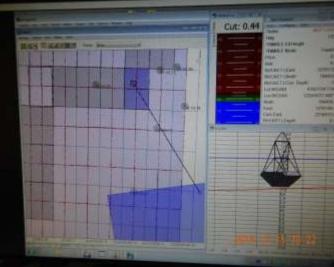
Bulk AC

- Losses thru water column
- Water Quality Impacts

Placement Method

Resulting Approach:

- Mechanical Placement
- Saturate Material
- Release material within 2' of bed



Navigation System

10

Each Bucket Placement Pre-Mapped

Bucket Modifications

11

5 CY Youngs Bucket modified to limit fill factor

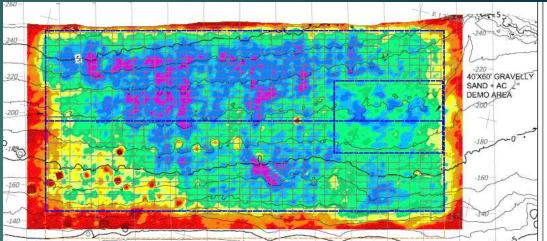
GAC Blending with ENR Material & Barge Loading

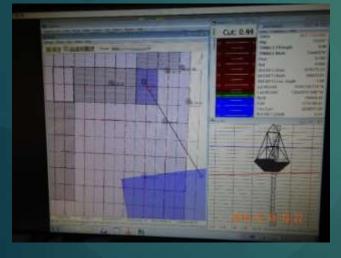
12

DOF DALTON OLMSTED FUGLEVAND

AC Amended ENR Materials (4% AC)

13


QA/QC


- Grain Size
- Observations
- AC %

Confirmation Methods

- Real time tracking during Placement
- Multibeam Surveys
- Grade Stakes

14

Test Plot Placement

2 - 60'x40' Test Plots Grade Stake every 100 SF 24 Stakes per Test Plot Placed during high tide Visual low tide assessment

Target Thickness: 6" to 9", No Areas less than 4", limit placement over 12"

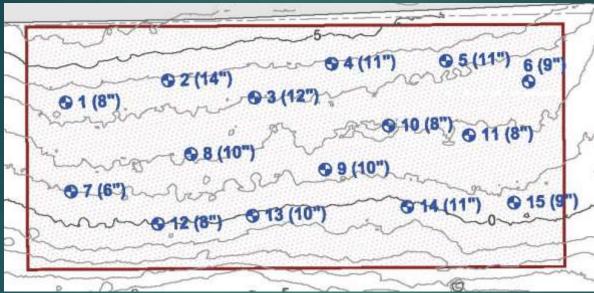
SAND E	NR + AC
Placed Thickness	Inches
AVERAGE	7
MINIMUM	3
MAXIMUM	12

GRAVELLY SA	ND ENR + AC
Placed Thickness	Inches
AVERAGE	8
MINIMUM	5
MAXIMUM	11

Field Observations

116 11 30 22:09

GAC visible after placement


- GAC observed on surface
- Moves with currents, waves

Spud hole and visible GAC

- Typical during marine construction
- Spud prior to ENR placement.
- GAC from adjacent placement
- Locations mapped.
- Avoid during monitoring

Post Placement (Y0) Monitoring Intertidal Plot

- 15 Grade stakes located in the plot.
- ENR+AC Placed during high tide.
- Visual assessment and measurement during the low tide.

GRAVELLY SAND ENR + AC

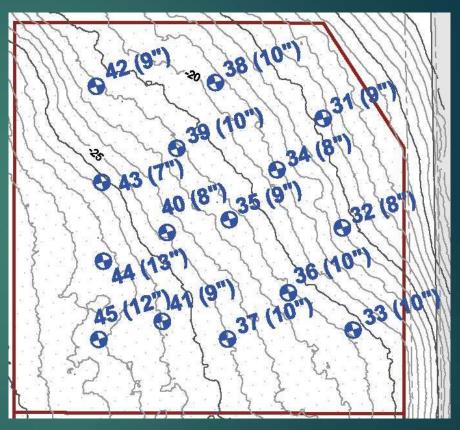
Placed Thickness	Inches
AVERAGE	10
MINIMUM	6
MAXIMUM	14

Post Placement (Y0) Monitoring Intertidal Plot

Plan View

SPI View

18


 Small AC particles observed on the surface and a band of AC material. AC is present as small, sand sized, black particles and is mixed throughout the sediment column.

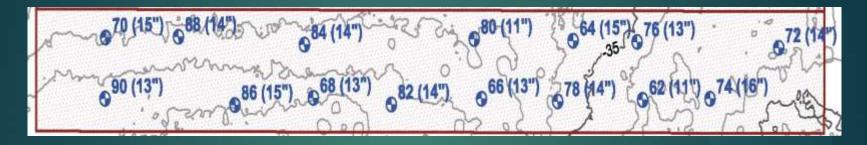
Post Placement (Y0) Monitoring 19 Scour Plot

- 15 Grade stakes located in the plot.
- Visual assessment and measurement by divers.

GRAVELLY SA	ND ENR + AC
Placed Thickness	Inches
AVERAGE	10
MINIMUM	7
MAXIMUM	13

Post Placement (Y0) Monitoring Scour Plot

Plan View

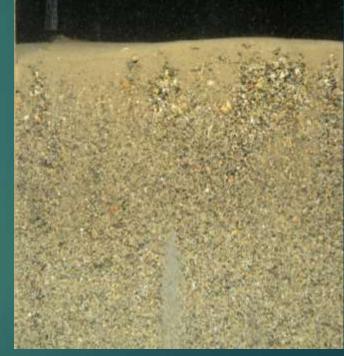

SPI View

- Small AC particles observed on the surface and a band of AC material.
- A crab, 2 fish and a bivalve siphon can be seen in this image.
- AC is mixed throughout the sediment column with a band of AC on the surface.

Post Placement (Y0) Monitoring 21 Subtidal Plot

- 15 Measurement locations in the plot.
- Visual assessment and measurement by divers using stainless push probes.

SAND E	NR + AC
Placed Thickness	Inches
AVERAGE	14
MINIMUM	11
MAXIMUM	16



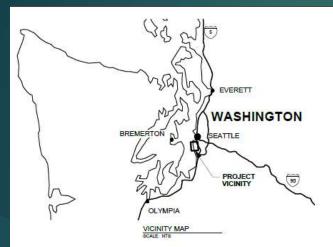
Post Placement (Y0) Monitoring Subtidal Plot

22

Plan View

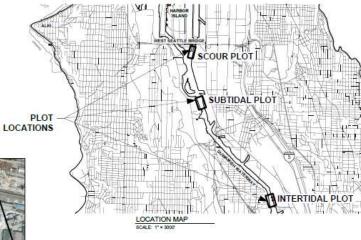
SPI View

- Soft, fine grained recently deposited sediment over and obscuring ENR+AC material.
- AC is present as small, sand sized, black particles mixed throughout the sediment column.
- Thin layer of recent deposition on the surface.


Conclusions

- Bulk GAC can be successfully handled and blended uniformly prior to placement
- Saturated GAC and ENR materials do not separate in barge
- Materials can be placed at target thickness
 - Bucket modifications successful
- GAC amended ENR appears to "flow" better
- Some winnowing and potential loss of GAC observed Next Steps
- Effectiveness to be evaluated over next three years

Questions?



SCOUR PLOT

ENHANCED NATURAL RECOVERY / ACTIVATED CARBON PILOT STUDY DUWAMISH WATERWAY CONTRACT NUMBER: C00992C15

DRAWING INDEX		
SHT NO	DWG NO	DRAWING TITLE
01	(3001	COVER SHEET, VICINITY AND LOCATION MAPS, DRAWING INDEX
02	C001	NOTES, SYMBOLS, AND ABBREVIATIONS
03	C002	SCOUR PLOT (RM 0.04 to 0.10) PLAN VIEW
64	C003	SUBTIDAL PLOT (RM 1.13 to 1.23) PLAN VIEW
05	C004	INTERTIDAL PLOT (RM 3.84 to 3.88 AND 3.90 to 3.94) PLAN VIEW
08	C005	SCOUR PLOT (RM 0.04 to 0.10) SECTION VIEWS
07	C008	SCOUR PLOT (RM 0.04 to 0.10) SECTION VIEWS
08	C007	SUBTIDAL PLOT (RM 1.13 to 1.23) SECTION VIEWS
09	C008	SUBTIDAL PLOT (RM 1.13 to 1.23) SECTION VIEWS
10	C009	INTERTIDAL PLOT (RM 3.84 to 3.88 AND 3.90 to 3.94) SECTION VIEWS
11	C010	INTERTIDAL PLOT (RM 3.84 to 3.88 AND 3.90 to 3.94) SECTION VIEWS

PROJECT WORK LOCATION:

FACILITY NAME: NA STREET ADDRESS: DUWAMISH WATERWAY CITY, STATE: SEATTLE & TUKWILA, WA

