

Dwight Look College of

Ianginiaasing

Joshua M. Lewis and Dr. Robert E. Randall

Presented by:

Joshua M. Lewis LT, CEC, USN United States Navy Texas A&M University ('14)

OUTLINE

- Research Objectives
- Experimental Setup
- Data Collection
- Results
- Conclusions
- Recommendations

RESEARCH OBJECTIVES

Primary:

- Quantify and predict a fixed screen's minor loss coefficient (k) while changing:
 - Cutter head rotational speed, Ω [RPM]
 - Ladder arm swing speed, V_L
 - Screen Opening Percentage, *β*

[Area of Openings/Area of Suction Mouth]

[in/s]

• Can k be expressed as: $k = f(\Omega, \beta, V_{L})$?

Secondary:

- Effect of screen opening shape
- Evaluate $SG = f(\Omega, V_L)$

SLURRY FLOW Cutter Suction Dredge

SLURRY FLOW Cutter Suction Dredge

2	
2	
a l	

Influence of Flow Rate and Specific Gravity

Low flow rate:

- Cutter head-dominant flow field
- Significant spillage occurs (Steinbusch, et al., 1999)
 - <u>5 to 40%</u> of total dredged material (Dekker, et al., 2003)
- Low production
- $-\downarrow k$ (Girani, 2014)
- High flow rate:
 - Suction-dominant flow field
 - Less spillage (↑ SG)
 - Increased production (Henriksen, 2009)
 - $-\uparrow k$

Influence of Flow Rate and Specific Gravity

• Specific Gravity (SG) and Minor Loss Coefficient (k)

Influence of Cutter Head Rotational Speed (Ω)

- <u>High Cutter Head Speeds</u>:
 - Greater re-suspended sediment (Henriksen, et al., 2011)
 - Greater spillage (Hayes, et al., 2000)
 - Centrifugal force > (Gravitational Force + Drag Force) (den Burger, et al., 1999)
 - Reduced production
- Low Cutter Head Speed:
 - (Gravitational Force + Drag Force) > Centrifugal force (den Burger, et al., 1999)
 - Poor mixing (den Burger, et al., 1999)
 - Reduced production

Influence of Cutter Head Rotational Speed (Ω)

Influence of Ladder Arm Swing Speed (V_L)

- Prediction Models (Hayes, et al., 2000):
 - Dimensional Model: Spillage \downarrow when V_L \uparrow
 - Non-dimensional model: Spillage $\uparrow\,$ when V_L $\uparrow\,$

Experiments (Yagi, et al., 1975):
– Mud Content in Pipeline ↑ when V₁ ↑

MODEL SCALING

Operating Parameter	Prototype	Haynes Lab Model Dredge	Model to Prototype Ratio
Cutter Head Rotational Speed	30 RPM 15 to 45 RPM		1:2 to $1:^{2}/_{3}$
Cutter Head Diameter	60 in (152 cm)	16 in (40.6 cm)	~1:4
Cutting Thickness	30 in (76 cm) 10 in (25 cm)		1:3
Water Depth	40 ft (12.2 m) 8 ft (2.44 m)		1:5
Grain Size (d_{50})	0.00164 ft (0.5 mm)	.00164 ft (0.5 mm) 0.00090 ft (0.275 mm)	
Grain Settling Velocity*	0.207 ft/s (63 mm/s)	0.108 ft/s (33 mm/s)	~1:2
Discharge Pipe Diameter	30 in (76 cm)	3 in (0.076 m)	1:10
Ladder Arm Swing Speed	12 in/s (30 cm/s)	1.0 to 3.0 in/s (2.5 to 7.6 cm/s)	1:12 to 1:4
Flow Rate	30,000 GPM (113,550 l/min)	250 to 400 GPM (946 to 1514 l/min)	1:5 to 1:4

*calculated using Schiller (1992) equation

MODEL SCALING

<u>Hydraulic Scaling</u> (sediment pick-up behavior)

Glover (2002)

Kinematic Scaling (Froude Number)

Doromotor		Chosen Test		
Faraneter	Hydraulic	Kinematic	Geometric (1:10)	Parameters
Q _{model} (GPM)	1117	1102	30	250 to 400
Ω _{model} (rpm)	21	58	30	15 to 45
$(V_L)_{model}$ (in/s)	3.2	6.2	1.2	1.0 to 3.0

Suction Inlet

Total Opening Area = 14.0 in^2

Diameter = 16 in

Screens

Centrifugal Pump

- Manually controlled
- $h_p = 20 hp$
- Max flow rate = 600 GPM
- Vane diameter = 12.2 in
- P_s and P_d measured
- 3" discharge hose

Sensors

Ohmart GEN2000[®] nuclear <u>density</u> gauge

Krohne IFC 090K electromagnetic <u>flow</u> meter

• Rosemount 1511AP pressure transmitter

• ToughSonic[®] <u>distance</u> sensor TS30S1-1V

Senix Corporation (2007)

Krohne (1997)

Ohmart (2014)

Rosemount, Inc. (2007)

DATA PROCESSING

CALCULATION OF K

Specific Gravity

Cutter Head Speed Effect

Optimum Ω that maximizes SG

Swing Speed Effect

• SG \uparrow as V_L \uparrow

Cutter Head Effects – Spillage

15 rpm 30 rpm 45 rpm

No consistent k-value relationship with Ω

 No consistent k-value relationship with V_L

Slurry Tests

- No consistent k-value relationship with flow rate (for Ω tests)
- k-value convergence

- No consistent k-value relationship with flow rate (for V_L tests)
- k-value convergence

Screen Opening Shape

• Screen 1

• Screen 3

Greater average k-value
for Screen 3

RESULTS k and β – Slurry Tests

RESULTS k and β – Slurry Tests

- Non-dimensional plot
- Extrapolated to common dredging parameters
- $1.1 \leq \hat{V} \leq 1.6$
- 1.0 ≤ **SG** ≤ 1.4
- Minimum k-value of 0.5

CONCLUSIONS

Conclusion

- No direct correlation between screen kvalue and Ω or V_L
- k-value increases exponentially with decreasing β
- Screen opening shape may change the screen's inherent k-value
- k-values converge at high V_s and SG

Girani (2014)

Screen clogging at Haynes Lab may occur at β < 0.50

CONCLUSIONS

Conclusion

Spillage increases with Ω

Hayes, et al. (2000); Henriksen, et al. (2011)

- SG and production increase with V_L
- Optimum Ω exists (Ω is limited by V_L)

den Burger, et al. (1999)

Yagi, et al. (1975)

• <u>k-value prediction equation</u> may be used for model or full-size dredges

RECOMMENDATIONS

- Future Experiments
 - Larger range of Ω
 - Larger range of V_L
 - More β -values
 - Different screen opening shapes
 - Take measures during testing to prevent screen clogging when $\beta < 0.50$
 - Investigate methods to prevent screen clogging
 - Automated flow control of dredge pump

PHOTOS

PHOTOS

PHOTOS

QUESTIONS?

LT Joshua M. Lewis SPAWAR Systems Center Pacific, San Diego, CA (619)553-6116 joshua.m.lewis@navy.mil