The Midtown Tunnel Project

Portsmouth - Norfolk, Virginia

By Hank Kelly & Bryan Ellis

Tunnel Trench Dredging

WEDA Eastern Chapter Meeting October 15, 2013

Presentation Goal

Goal is to Promote awareness among the Regulatory Agencies that the Permitting Process and the Procurement Method must line up

Introduction

Project Overview Immersed Tube Tunnels Public Private Partnership

> Regulatory Challenges/ Construction Risk

Dredging Overview Logistical Challenges

Overview - Why are we building a new tunnel?

What is the Most Heavily Travelled 2 Lane Road East of the Mississippi?

Carrying over 1 million vehicles per month!

Overview - Why are we building a new tunnel?

ANSWER - Midtown Tunnel Between Norfolk/Portsmouth, Virginia

Project Overview - What are we building?

Project Overview – What are we building?

Immersed Tube Tunnel

- 4,200 feet portal to portal plus two each 700 foot "boat" sections
- 2. Two lane highway tunnel
- 3. 11 tubes each 340' long by 54' wide by 28' high
- 4. weight of 16,000 tons per tube
- 5. Reinforced Concrete tube (second in USA)

What are we building?

There are 11 Immersed Tubes Average 340' long, 55' wide and 28' high

Overview - What are we building?

Steel Shelled Tubes (above) Reinforced Concrete Tubes (below)

Why are we building it?

The Project is a key part of the Area's transportation solution – "tunnel redundancy"

Current State of the network

ERC's Vision

Who is building the Project?

Project Construction and Design Team

When are we building the Project?

- Started the process April 2008
- Conceptual proposal submitted September 2008
 PRICE @ \$1.253B
- Signed Interim Agreement January 2010
- Submitted Design\Build LS Price June 2011 (based on 30% design)

When are we building the Project?

- Signed Comprehensive Agreement and Design/Build Agreement in December 2011
- Financial Close occurred April 13, 2012
- PRICE @ \$1.468B
- Complete New Tunnel and MLK Expressway 5 years from Financial Close
- Rehab existing Midtown Tunnel in the 6th year

When are we building the Project?

- Estimated Project Completion 2018
 - Includes Estimated Duration of Marine Work Approx 3 ½ years
 - Estimated Duration of Dredging –
 14 months (3 Phases)

How are we building the Project?

Public Private Partnership (P3)

VS

Design - Bid - Build

Public – Private – Partnership (P3)

- VDOT solicits the Private Business Sector to Develop, Finance, Design, Build, Operate and Maintain
- ERC Developer & Concessionaire Collects Tolls for a concession period of 58 years
- ERC contracts with Design/Build Contractor SKW

Public – Private – Partnership (P3) Key Benefits

- Delivering major transportation improvements and new travel choices
- Leverages private investment to bolster state funding to build major projects
- Supporting thousands of jobs and pumping billions into Virginia's economy
- Shift key risk to private sector protecting Virginia taxpayers
- Helps promote a better quality of life by reducing travel times

Regulatory Challenges

PPP Design Build Process vs. Permitting Process

= Contractors Risk

Cost Impact Analysis For Dredging Permits

Major Factors

- 1. 1.5 Million CY Does Not Pass Criteria for Ocean Placement
- 2. Time-of-Year Restrictions
- 3. Permitting Delays
- 4. Contaminated or Hazardous Dredge Material

1. 1.5 Million CY Does Not Pass Criteria for Ocean Placement –
 Assumption Material Rehandled and Disposed of Upland (140 mile tow). Dredge Production controlled by unloading operation.

Potential Direct Cost Impact = \$180 Million

Potential Delay Cost Impact = 2 Months \$ 15.2 Million

2. Time-of-Year Restrictions – Assumption 4 Months = Potential Direct Cost Impact = \$3 Million
Potential Delay Cost Impact = 4 Month Delays \$18.2 Million

- Permitting Delays Assumption 3 Months =
 Potential Delay Cost Impact \$11.4 Million
- 4. Contaminated or Hazardous Dredge Material Assumption 30,000 CY of Contaminated/Hazardous Material Requiring Special Handling and Disposal =

Potential Direct Cost Impact = \$6 Million

Potential Delay Cost Impact \$3.8 Million

Total Potential Cost Impacts
Direct Cost Impact = \$189 Million
Delay Cost Impact = \$37.2 Million

How can we work as a TEAM to limit that risk?

- Agencies Allowing Applicant to submit an "Incomplete"
 Permit and begin initial review and comments
- Allowing a Large Projects to break out smaller components and issue separate permits (i.e. Waterline Relocation)
- Developing a "Large Projects" Joint Permit Application and Supporting Regulatory Staff so adequate attention is given to projects involving State and Federal funds
- Use more of a NEPA approach to analyzing the overall environmental benefits and/or impacts

Water Quality Monitoring

Project Site In-Water Components

Tunnel Trench Design Overview

Dredging Overview

- 1.3 Million CY
- 110,000 CY Requiring Upland Disposal
- 56,000 CY of Contaminated Sediments
- 1.2 Million CY Approved For Ocean Placement
- Tunnel Trench 3700 ft Ranges in Depth From 36–100 ft.
- 5 Geological Formations
- Directly Adjacent to 50+ year old Midtown Tunnel
- Dredging Within a Large Support of Excavation Structure
- 84 Nautical Mile Round Trip to ODMDS

Dredging Overview

- Clamshell Dredging Required due to lack of Upland Disposal Sites in Proximity to the Project
- 42" HRSD Force Main below the dredge template
- Removal of 2000+ Treated and Untreated Abandoned Timber Piling
- Removal of Abandoned 30" Cast Iron Waterline
- Detailed Sequence Required to Insure Sequential Operations remain on Schedule and GeoTech limits are not exceeded
- Removal of Unsuitable Soils in-between cross braces 18' apart down to a variable depth up to 70'
- Tight Tolerances to insure backfill quantities to not exceed proposed dredge template
- Close Proximity to Oyster Reefs

Dredging Overview – Sampling and Analysis

5 units horizontally – 2 vertical per unit – 2 units consisting of existing land above EL 0'

Dredging Overview - Not Tested or Not Approved

Dredging Overview - Obstructions

Dredging Overview – BMP's

PRELIMINARY SILT CURTAIN CONFIGURATION FOR DREDGING UNIT 2T

BASIC LEGEND: LIMITS OF DIRECTING UNIT 2 1. REFERENCE MAP SHOWS THE PROPOSED SILT CURTAIN LAYOUT. DURING DREDGING OPERATIONS IN DU 2T. LIMITS OF DREDGING UNIT 2 THAT MAY NOT 2. DU 2T - DU = DREDGING UNIT - 2T IS DEFINED AS THE TOP REQUIRE DREDGING PENCING FINAL DESIGN INTERVAL (BL. 010' TO -10 FT BELOW THE EXISTING SECONDARY APPROXIMATE LIMITS OF TURBIDITY CURTAIN - PLOOD TIDE. DU 2T CONTAINS A TOTAL OF \$1,000 CY OF DREDSE MATERIAL. DEPTH VARIES. APPROXIMATE LIMITS OF TURBIDITY CURTAIN - EIR TIDE SCALE LIMITS OF EXISTING MIDTEWN TUNNEL REDEBAL CHANNEL **FIGURE 2-2** PRELIMINARY SILT CURTAIN CONFIGURATION FOR DREDGING UNIT 2T

Dredging Overview – Current Operation

Environmental Dredging

Dredging Overview – Environmental Dredging

Dredging Overview – Material Treatment and Rehandling

Tunnel Trench Design Overview

10

SOE Wall Portsmouth and Norfolk

Geotech Investigations and Trench Design

SECOND MIDTOWN TUNNEL GENERALIZED SUBSURFACE PROFILE

Figure 1

Logistical Challenges Norfolk Waterline Relocation

Logical Challenges Ocean Disposal Site

Figure 1-2. Sampling Locations: Chesapeake Bay Control Site, Norfolk Ocean Disposal Site, and the Willoughby Bank Reference Site.

Construction steps:

- 1) Fabricate tubes in a drydock
- Install bulkheads on ends of tubes
- 3) Tow tubes to job site
- 4) Dredge trench in river bottom
- Place and Screed Gravel bed
- Ballast tubes and lower to gravel bed
- 7) Connect tubes together
- 8) Backfill dredged trench over placed tubes to bottom of river channel

STEP 1 - Fabricate Concrete Tubes in Drydock SPARROWS POINT, MD

STEP 2 - Install End Bulkheads in Drydock

STEP 3 – Flood drydock, open drydock gate, Tow Tubes to Jobsite

Sparrows Point to Hampton Roads – 200 Miles

STEP 4 – Dredge Trench

New Tunnel Profile

Step 5 - Placing and Screeding Gravel Bed

Fort McHenry Screeding Equipment

Step 6 – Tunnel Placement

- Horizontal alignment
 - —Anchor winches on lay barge

Lowering falls between placing girders and tunnel element

Tunnel Placement – Lay Barge

STEP 6 – Ballast and Lower Tubes

Step 7 - Tube Placement – Tube Connections

STEP 8 - Marine Operations Backfill

